Electronic, thermal and mechanical properties of carbon nanotubes

M. S. Dresselhaus1, G. Dresselhaus2, Jean‐Christophe Charlier3, E. Hernández4
1Department of Physics and Department of Electrical Engineering and Computer Science, Cambridge, MA 02139–4307, USA
2Francis Bitter Magnet Laboratory, Massachussetts Institute of Technology, Cambridge, MA 02139–4307, USA
3Université Catholique de Louvain, Unité de Physico–Chimie et de Physique des Matériaux, Place Croix du Sud 1, Bâtiment Boltzmann, 1348 Louvain–la–Neuve, Belgium
4Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1126/science.1065824

10.1103/PhysRevB.65.241403

10.1016/0038-1098(96)00386-9

10.1038/363605a0

10.1103/PhysRevB.66.165405

10.1209/0295-5075/28/5/007

10.1103/PhysRevLett.72.1878

10.1126/science.275.5308.1922

10.1103/PhysRevLett.85.4361

10.1103/PhysRevB.66.155418

10.1103/PhysRevB.63.155414

10.1021/ar010166k

10.1103/PhysRevB.53.11108

10.1103/PhysRevLett.76.971

10.1016/S0038-1098(97)10125-9

10.1016/j.cplett.2003.11.061

10.1063/1.1666997

10.1126/science.272.5261.523

10.1021/nl015606f

10.1080/000187300413184

Dresselhaus G. Pimenta M. A. Saito R. Charlier J.-C. Brown S. D. M. Corio P. Marucci A. & Dresselhaus M. S. 2000 On the π-π overlap energy in carbon nanotubes. In Science and Applications of Nanotubes. Proc. Int. Workshop on the Science and Applications of Nanotubes Michigan State University East Lansing MI USA 24-27 July 1999 (ed. D. Tománek & R. J. Enbody) pp. 275-295. Dordrecht: Kluwer Academic.

10.1016/S0008-6223(02)00066-0

Dresselhaus M. S., 2003, Resonant Raman scattering on one-dimensional systems, Indian J. Phys. B, 77, 75

10.1103/PhysRevLett.88.235506

10.1063/1.1577540

10.1103/PhysRevB.49.5643

10.1038/382054a0

Endo M. 1975 Mecanisme de croissance en phase vapeur de fibres de carbone. PhD thesis University of Orleans France.

10.1038/39282

Fantini C., 2004, Step-like dispersive behavior of the intermediate frequency Raman modes in carbon nanotubes, Phys. Rev. Lett. (In the press.)

10.1088/0034-4885/60/12/001

Haeckel E. 1862 Die Radiolarien (Rhizopoda Radiaria). Berlin: Reimer.

10.1103/PhysRevLett.68.1579

10.1103/PhysRevB.32.1981

10.1103/PhysRevLett.80.4502

10.1007/s003390050890

Hone J. 2001 Phonons and thermal properties of carbon nanotubes. In Carbon nanotubes: synthesis structure properties and applications (ed. M. S. Dresselhaus G. Dresselhaus & Ph. Avouris) pp. 273-286. Springer Series in Topics in Applied Physics vol. 80. Springer.

Hone J., 2001, Appl. Phys. Lett., 78, 666

10.1126/science.1066192

10.1038/354056a0

10.1038/363603a0

10.1063/1.470966

10.1103/PhysRevB.48.11385

10.1103/PhysRevLett.85.2617

10.1103/PhysRevLett.86.1118

10.1103/PhysRevB.63.245416

10.1088/1367-2630/5/1/139

10.1016/S0379-6779(98)00278-1

10.1103/PhysRevLett.87.215502

10.1103/PhysRev.140.A1133

10.1103/PhysRevB.58.14013

10.1103/PhysRevB.64.235406

10.1016/0009-2614(95)00961-3

Landau L. D. & Lifshitz E. M. 1986 Theory of elasticity. Oxford: Pergamon.

10.1103/PhysRevLett.76.479

Li D. 2002 Thermal transport in individual nanowires and nanotubes. PhD thesis Department of Mechanical Engineering University of California Berkeley CA USA.

10.1063/1.1324984

Liu B. B., 2002, Resistivity and fractal structure in carbon nanotube networks, J. Phys. Condens. Matter, 44, 125

10.1103/PhysRevLett.81.1638

10.1103/PhysRevLett.79.1297

10.1103/PhysRevB.64.241402

10.1103/PhysRevLett.68.631

10.1103/PhysRevB.50.4976

10.1103/PhysRevB.50.18360

10.1103/PhysRevLett.81.4656

10.1038/34145

10.1126/science.1058853

Peierls R. 1955 Quantum theory of solids. Oxford University Press.

10.1103/PhysRevB.58.R16016

10.1126/science.283.5407.1513

Quian D. Wagner G. J. Liu W. K. Yu M. F. & Ruoff R. S. 2003 Mechanics of carbon nanotubes. In Handbook of nanoscience engineering and nanotechnology (ed. W. A. Goddard III D. W. Brenner S. E. Lyshevski & G. J. Iafrate) pp. 19-1-19-63. Boca Raton FL: CRC Press.

10.1126/science.275.5297.187

10.1103/PhysRevB.61.R13389

10.1103/PhysRevB.65.153407

10.1103/PhysRevB.45.12592

10.1016/0008-6223(95)00021-5

10.1063/1.107080

10.1103/PhysRevB.53.2044

Saito R. Dresselhaus G. & Dresselhaus M. S. 1998 Physical properties of carbon nanotubes. London: Imperial College Press.

10.1103/PhysRevB.61.2981

10.1103/PhysRevLett.82.944

10.1103/PhysRevLett.88.065501

10.1166/jnn.2003.231

10.1103/PhysRevLett.90.027403

10.1103/PhysRevB.59.12678

10.1016/S0038-1098(03)00341-7

10.1016/S0009-2614(02)00102-1

10.1103/PhysRevB.69.115428

10.1103/PhysRevLett.85.1096

10.1080/10587250215239

10.1103/PhysRevLett.89.166801

10.1126/science.1060470

10.1038/386474a0

10.1103/PhysRevLett.84.1716

10.1103/PhysRevLett.89.075505

10.1007/s003390201278

10.1103/PhysRevLett.85.5214

10.1038/381678a0

10.1063/1.1452788

10.1103/PhysRevB.59.10928

10.1063/1.120680

10.1063/1.124185

10.1038/35040702

10.1038/34139

10.1126/science.277.5334.1971

Yakobson B. I. & Avouris Ph. 2001 Mechanical properties of carbon nanotubes. In Carbon nanotubes: synthesis structure properties and applications (ed. M. S. Dresselhaus G. Dresselhaus & Ph. Avouris) pp. 287-327. Topics in Applied Physics vol. 80. Springer.

10.1103/PhysRevLett.76.2511

10.1016/S0927-0256(97)00047-5

10.1103/PhysRevB.66.165440

10.1038/46241

10.1126/science.287.5453.637

10.1103/PhysRevLett.84.5552