Electronic structures and spectroscopic properties of promising highly efficient red phosphorescent Os(II)(LR)2(PH3)2 complexes: a theoretical exploration

Theoretical Chemistry Accounts - Tập 127 - Trang 467-474 - 2010
Jian-Po Zhang1,2, Bao-Hui Xia1,3, Li Jin2, Hong-Xing Zhang1
1State key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People’s Republic of China
2School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, People’s Republic of China
3College of Chemistry, Jilin University, Changchun, People’s Republic of China

Tóm tắt

The red phosphorescent osmium(II) complexes [Os(LR)2(PH3)2] (L = 2-pyridyltriazole (ptz): R = H (1a), CF3 (1b), t-Bu (1c)); L = 2-pyridylpyrazole (ppz): R = H (2a), CF3 (2b), t-Bu (2c)); L = 2-phenylpyridine (ppy): R = H (3a)) were explored using density functional theory (DFT) methods. The ground- and excited-state geometries of the complexes were optimized at the B3LYP/LANL2DZ and UB3LYP/LANL2DZ levels, respectively. The absorption and phosphorescence of the complexes in CH2Cl2 media were calculated based on the optimized ground- and excited-state geometries using time-dependent density functional theory method with the polarized continuum model. The optimized geometry structural parameters of the complexes in the ground state agree well with the corresponding experimental values. The lower-lying unoccupied molecular orbitals of the complexes are dominantly localized on the L ligand, while the higher-lying occupied ones are composed of Os(II) atom and L ligand. The low-lying metal-to-ligand and intraligand charge transfer (MLCT/ILCT) transitions and high-lying ILCT transitions are red-shifted with the increase in the π-donating ability of the L ligand and the π electron-donating ability of R substituent. The calculation revealed that the phosphorescence originated from 3MLCT/3ILCT excited state. However, the complex 3a displayed different types of MLCT/ILCT excited state compared with that of 1a–2c, and the different types of transition were also found in the absorption. In addition, we found that the phosphorescence quantum efficiency of Os(II) complexes is related to the metal composition in the high-energy occupied molecular orbitals, it will be helpful to designing highly efficient phosphorescent materials.

Tài liệu tham khảo

Demadis KD, Hartshorn CM, Meyer TJ (2001) Chem Rev 101:2655 Carlson B, Phelan GD, Kaminsky W, Dalton L, Jiang X, Liu S, Jen AKY (2002) J Am Chem Soc 124:14162 Xin H, Li F, Shi M, Bian ZQ, Huang HC (2003) J Am Chem Soc 125:7166 Lo KKW, Chung CKT, Lee KM, Lui LH, Tsang KHK, Zhu NY (2003) Inorg Chem 42:6886 Hamilton JG, Rooney JJ, DeSimone JM, Mistele C (1998) Macromolecules 31:4387 Gassner F, Dinjus E, Gorls H, Leitner W (1996) Organometallics 15:2078 Haynes A, Maitlis PM, Morris GE, Sunley GJ, Adams H, Badger PW, Bowers CM, Cook DB, Elliott PIP, Ghaffar T, Green H, Griffin TR, Payne M, Pearson JM, Taylor MJ, Vickers PW, Watt RJ (2004) J Am Chem Soc 126:2847 Kawamura Y, Goushi K, Brooks J, Brown JJ, Sasabe H, Adachi C (2005) Appl Phys Lett 86:1104 Baldo MA, Thompson ME, Forrest SR (1999) Pure Appl Chem 71:2095 Yang QZ, Wu LZ, Wu ZX, Zhang LP, Tung CH (2002) Inorg Chem 41:5653 Balzani V, Barigelletti F, De Cola L (1990) Top Curr Chem 158:31 Craig DC, Scudder ML, McHale WA, Goodwin HA (1998) Aust J Chem 51:1131 Chen YL, Sinha C, Chen IC, Liu KL, Chi Y, Yu JK, Chou PT, Lu TH (2003) Chem Commun 3046 Chou PT, Chi Y (2007) Chem Eur J 13:380 Chou PT, Chi Y (2006) Eur J Inorg Chem 3319 Kappaun S, Sax S, Eder S, Moller KC, Waich K, Niedermair F, Saf R, Mereiter K, Jacob J, Mullen K, List EJW, Slugovc C (2007) Chem Mater 19:1209 Wu FI, Shih PI, Shu CF, Tung YL, Chi Y (2005) Macromolecules 38:9028 Statmann RE, Scuseria GE (1998) J Chem Phys 109:8218 Paul F, Costa G, Bondon A, Gauthier N, Sinbandhit S, Toupet L, Costuas K, Halet JF, Lapinte C (2007) Organometallics 26:874 O’Grady E, Kaltsoyannis N (2004) Phys Chem Chem Phys 6:680 Pan QJ, Zhang HX (2004) Organometallics 23:5198 Pan QJ, Fu HG, Yu HT, Zhang HX (2006) Inorg Chem 45:8729 PyykkÖ P (2004) Angew Chem Int Ed 43:4412 Bryce AB, Charnochk JM, Pattrichk RAD, Lennie AR (2003) J Phys Chem A 107:2516 Nemykin VN, Makarova EA, Grosland JO, Hadt RG, Koposov AY (2007) Inorg Chem 46:9591 Becke AD (1987) Phys ReV A 38:3098 Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439 Cossi M, Scalmani G, Regar N, Barone V (2002) J Chem Phys 117:43 Hay PJ, Wadt WR (1985) J Chem Phys 82:299 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Shida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Wallingford, Gaussian, Inc Che CM, Lai TF, Chung WC, Schaefer WP, Gray HB (1987) Inorg Chem 26:3907 Liu T, Zhang HX, Xia BH (2007) J Phys Chem A 111:8724 Zhang JP, Zhou X, Liu T, Bai FQ, Zhang HX, Tang AQ (2008) Theor Chem Acc 121:123 Liu T, Xia BH, Zhou X, Zhang HX, Pan QJ, Gao JS (2007) Organometallics 26:143 Zhou X, Zhang HX, Pan QJ, Xia BH, Tang AQ (2007) J Phys Chem A 109:8809 Zhang JP, Zhou X, Bai FQ, Zhang HX, Tang AQ (2009) Theor Chem Account 122:31