Electronic structure of superconducting VN(111) films

DISCOVER NANO - Tập 19 Số 1
Ruicong Zhai1, Jiachang Bi1, Sining Zheng2, Wei Chen3, Yuan Lin1, Shaozhu Xiao1, Yanwei Cao1
1Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
3Hefei Innovation Research Institute, Beihang University, Hefei 230013, China

Tóm tắt

AbstractVanadium nitride (VN) is a transition-metal nitride with remarkable properties that have prompted extensive experimental and theoretical investigations in recent years. However, there is a current paucity of experimental research investigating the temperature-dependent electronic structure of single-crystalline VN. In this study, high-quality VN(111) films were successfully synthesized on $$\alpha$$ α -Al$$_2$$ 2 O$$_3$$ 3 (0001) substrates using magnetron sputtering. The crystal and electronic structures of the VN films were characterized by a combination of high-resolution X-ray diffraction, low-energy electron diffraction, resonant soft X-ray absorption spectroscopy, and ultraviolet photoelectron spectroscopy. The electrical transport measurements indicate that the superconducting critical temperature of the VN films is around 8.1 K. Intriguingly, the temperature-dependent photoelectron spectroscopy measurements demonstrate a weak temperature dependence in the electronic structure of the VN films, which is significant for understanding the ground state of VN compounds.

Từ khóa


Tài liệu tham khảo

Zhang R, Fu Q, Yin C, Li C, Chen X, Qian G, Lu C, Yuan S, Zhao X, Tao H. Understanding of metal-insulator transition in VO$$_2$$ based on experimental and theoretical investigations of magnetic features. Sci Rep. 2018;8:17093.

Chua R, Henke J, Saha S, Huang Y, Gou J, He X, Das T, van Wezel J, Soumyanarayanan A, Wee Andrew TS. Coexisting charge-ordered states with distinct driving mechanisms in monolayer VSe$$_2$$. ACS Nano. 2022;16:783.

Zhang L, Zhou Y, Guo L, Zhao W, Barnes A, Zhang H, Eaton C, Zheng Y, Brahlek M, Haneef Hamna F, Podraza Nikolas J, Chan Moses HW, Gopalan V, Rabe Karin M, Engel-Herbert R. Correlated metals as transparent conductors. Nat Mater. 2016;15:204.

Hu Y, Teicher Samuel ML, Ortiz Brenden R, Luo Y, Peng S, Huai L, Ma J, Plumb Nicholas C, Wilson Stephen D, He J, Shi M. Topological surface states and flat bands in the kagome superconductor CsV$$_3$$Sb$$_5$$. Sci Bull. 2022;67:495.

Mei AB, Wilson RB, Li D, Cahill DG, Rockett A, Birch J, Hultman L, Greene JE, Petrov I. Elastic constants, Poisson ratios, and the elastic anisotropy of VN(001), (011), and (111) epitaxial layers grown by reactive magnetron sputter deposition. J Appl Phys. 2014;115:214908.

Niu L, Cai Y, Dong T, Zhang Y, Liu X, Zhang X, Zeng L, Liu A. Vanadium nitride@carbon nanofiber composite: synthesis, cascade enzyme mimics and its sensitive and selective colorimetric sensing of superoxide anion. Biosens Bioelectron. 2022;210:114285.

Liu Y, Wu Q, Liu L, Manasa P, Kang L, Ran F. Vanadium nitride for aqueous supercapacitors: a topic review. J Mater Chem A. 2020;8:8218.

Pilloud D, García-Wong AC, Mangin D, Capon F, Pierson JF. A comparative study of the thermochromic performances of VO$$_2$$ films obtained by air oxidation of V and VN precursors. Sol Energy Mater Sol Cells. 2022;248:111947.

Liu X, Lu H, He M, Jin K, Yang G, Ni H, Zhao K. Epitaxial growth of vanadium nitride thin films by laser molecule beam epitaxy. Mater Lett. 2014;123:38.

Mei AB, Tuteja M, Sangiovanni DG, Haasch RT, Rockett A, Hultman L, Petrov I. Growth, nanostructure, and optical properties of epitaxial VN $$_x$$/MgO(001) (0.80 $$\le$$ x $$\le$$ 1.00) layers deposited by reactive magnetron sputtering. J Mater Chem C. 2016;4:7924.

Mei AB, Hellman O, Wireklint N, Schlepütz CM, Sangiovanni DG, Alling B, Rockett A, Hultman L, Petrov I, Greene JE. Dynamic and structural stability of cubic vanadium nitride. Phys Rev B. 2015;91:054101.

Zheng Q, Mei AB, Tuteja M, Sangiovanni DG, Hultman L, Petrov I, Greene JE, Cahill David G. Phonon and electron contributions to the thermal conductivity of VN$$_{x}$$ epitaxial layers. Phys Rev Mater. 2017;1:065002.

Harrington G, Santiso J. Back-to-Basics tutorial: X-ray diffraction of thin films. J Electroceramics. 2021;47:1.

Dolabella S, Borzì A, Dommann A, Neels A. Lattice strain and defects analysis in nanostructured semiconductor materials and devices by high-resolution X-ray diffraction: theoretical and practical aspects. Small Methods. 2022;6:2100932.

Vignaud G, Gibaud A. REFLEX: a program for the analysis of specular X-ray and neutron reflectivity data. J Appl Crystallogr. 2019;52:201.

Abdelkadir AA, Victor J, Vignaud G, Marcel C, Sahal M, Maaza M, Chaker M, Gibaud A. Analysis of the temperature dependent optical properties of V$$_{1-x}$$W$$_{x}$$O$$_{2}$$ thin films. Thin Solid Films. 2023;772:139805.

Favaro G, Bazzan M, Amato A, Arciprete F, Cesarini E, Corso AJ, De Matteis F, Dao TH, Granata M, Honrado-Benítez C, Gutiérrez-Luna N, Larruquert JI, Lorenzin G, Lumaca D, Maggioni G, Magnozzi M, Pelizzo MG, Placidi E, Prosposito P, Puosi F. Measurement and simulation of mechanical and optical properties of sputtered amorphous SiC coatings. Phys Rev Appl. 2022;18:044030.

Wu S, Smith DA, Nakarmi P, Rai A, Clavel M, Hudait MK, Zhao J, Michel FM, Mewes C, Mewes T, Emori S. Room-temperature intrinsic and extrinsic damping in polycrystalline Fe thin films. Phys Rev B. 2022;105:174408.

Roy M, Mucha NR, Ponnam RG, Jaipan P, Scott-Emuakpor O, Yarmolenko S, Majumdar AK, Kumar D. Quantum interference effects in titanium nitride films at low temperatures. Thin Solid Films. 2019;681:1.

Soriano L, Abbate M, Pen H, Prieto P, Sanza JM. The electronic structure of TiN and VN: X-ray and electron spectra compared to band structure calculations. Solid State Commun. 1997;102:291.

Zhang R, Li X, Meng F, Bi J, Zhang S, Peng S, Sun J, Wang X, Wu L, Duan J, Cao H, Zhang Q, Gu L, Huang L, Cao Y. Wafer-scale epitaxy of flexible nitride films with superior plasmonic and superconducting performance. ACS Appl Mater Interfaces. 2021;13:60182.

Saveskul NA, Titova NA, Baeva EM, Semenov AV, Lubenchenko AV, Saha S, Reddy H, Bogdanov SI, Marinero EE, Shalaev VM, Boltasseva A, Khrapai VS, Kardakova AI, Goltsman GN. Superconductivity behavior in epitaxial TiN films points to surface magnetic disorder. Phys Rev Appl. 2019;12:054001.

Liu Y, Liu Y, Tang Z, Jiang H, Wang Z, Ablimit A, Jiao W, Tao Q, Feng C, Xu Z, Cao G. Superconductivity and ferromagnetism in hole-doped RbEuFe$$_4$$As$$_4$$. Phys Rev B. 2016;93:214503.

Seah MP, Dench WA. Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf Interface Anal. 1979;1:2.

Schubert WK, Shelton RN, Wolf EL. Electron-energy-loss- and ultraviolet-photoemission-spectroscopy study of the $${\rm VN }_{x}$$ system. Phys Rev B. 1981;23:5097.

Glaser A, Surnev S, Ramsey MG, Lazar P, Redinger J, Podloucky R, Netzer FP. The growth of epitaxial VN(1 1 1) nanolayer surfaces. Surf Sci. 2007;601:4817.

Ren G, Zhang N, Zhang X, Zhang H, Yu P, Zheng S, Zhou D, Tian Z, Liu X. Photon-in/photon-out endstation for studies of energy materials at beamline 02B02 of Shanghai synchrotron radiation facility. Chin Phys B. 2020;29:016101.

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.

Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953.

Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21:395502.

Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Corso AD, de Gironcoli S, Delugas P, DiStasio RA, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H-Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen H-V, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S. Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys Condens Matter. 2017;29:465901.