Electronic structure of graphene/TiO2 interface: Design and functional perspectives
Tài liệu tham khảo
Kamat, 2010, Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support, J. Phys. Chem. Lett., 1, 520, 10.1021/jz900265j
Zhang, 2010, TiO2-Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO2-Graphene Truly Different from Other TiO2-Carbon Composite Materials?, ACS Nano, 4, 7303, 10.1021/nn1024219
Zhang, 2011, Photocatalytic Patterning and Modification of Graphene, J. Am. Chem. Soc., 133, 2706, 10.1021/ja109934b
Xiang, 2012, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev., 41, 782, 10.1039/C1CS15172J
Morales-Torres, 2012, Design of graphene-based TiO2 photocatalysts-a review, Environ. Sci. Pollut. Res., 19, 3676, 10.1007/s11356-012-0939-4
Cao, 2017, Role of graphene in enhancing the mechanical properties of TiO2/graphene heterostructures, Nanoscale, 9, 11678, 10.1039/C7NR03049E
Low, 2017, Heterojunction Photocatalysts, Adv. Mater., 29, 1601694, 10.1002/adma.201601694
Liu, 2018, Graphene Grown on Anatase-TiO2 Nanosheets: Enhanced Photocatalytic Activity on Basis of a Well-Controlled Interface, J. Phys. Chem. C, 122, 6388, 10.1021/acs.jpcc.7b12305
Manga, 2009, Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties, Adv. Funct. Mater., 19, 3638, 10.1002/adfm.200900891
Wang, 2012, Large Ultrathin Anatase TiO2 Nanosheets with Exposed 001 Facets on Graphene for Enhanced Visible Light Photocatalytic Activity, J. Phys. Chem. C, 116, 19893, 10.1021/jp306498b
Du, 2011, Hierarchically Ordered Macro-Mesoporous TiO2-Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities, ACS Nano, 5, 590, 10.1021/nn102767d
Lee, 2012, Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene, Adv. Mater., 24, 1084, 10.1002/adma.201104110
Xiang, 2012, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles, J. Am. Chem. Soc., 134, 6575, 10.1021/ja302846n
Kiarii, 2018, Recent advances in titanium dioxide/graphene photocatalyst materials as potentials of energy generation, Bull. Mater. Sci., 41, 75, 10.1007/s12034-018-1593-3
Zhang, 2017, Interface charge transfer and enhanced visible light response of graphene/anatase TiO2(110) systems with and without oxygen vacancy: A DFT+U calculation, Appl. Surf. Sci., 420, 105, 10.1016/j.apsusc.2017.05.142
Hashimoto, 2005, TiO2 Photocatalysis: A Historical Overview and Future Prospects, Jap. J. Appl. Phys., 44, 8269, 10.1143/JJAP.44.8269
Linsebigler, 1995, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev., 95, 735, 10.1021/cr00035a013
Henderson, 2011, A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep., 66, 185, 10.1016/j.surfrep.2011.01.001
Zheng, 2020, Photo/Electrochemical Applications of Metal Sulfide/TiO2 Heterostructures, Adv. Energy Mater., 10, 1902355, 10.1002/aenm.201902355
Xie, 2013, Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting, Adv. Mater., 25, 3820, 10.1002/adma.201301207
Singh, 2015, Computational Screening of 2D Materials for Photocatalysis, J. Phys. Chem. Lett., 6, 1087, 10.1021/jz502646d
Mishra, 2020, Fluorine intercalated graphene: Formation of a two-dimensional spin lattice through pseudoatomization, Phys. Rev. Mater., 4, 074411, 10.1103/PhysRevMaterials.4.074411
Hu, 2017, Two-dimensional van der Waals heterojunctions for functional materials and devices, J. Mater. Chem. C, 5, 12289, 10.1039/C7TC04697A
Du, 2011, Electronic Functionality in Graphene-Based Nanoarchitectures: Discovery and Design via First-Principles Modeling, J. Phys. Chem. Lett., 2, 73, 10.1021/jz101347a
Gao, 2013, Interfacial Charge Transfer and Enhanced Photocatalytic Mechanisms for the Hybrid Graphene/Anatase TiO2 (001) Nanocomposites, J. Phys. Chem. C, 117, 16022, 10.1021/jp403241d
Yang, 2017, Hybrid TiO2/graphene derivatives nanocomposites: is functionalized graphene better than pristine graphene for enhanced photocatalytic activity?, Catal. Sci. Technol., 7, 1423, 10.1039/C6CY02224C
Yang, 2013, Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment, ACS Nano, 7, 1504, 10.1021/nn305288z
Li, 2013, A LDA+U study of the hybrid graphene/anatase TiO2 nanocomposites: Interfacial properties and visible light response, Comput. Theor. Chem., 1025, 30, 10.1016/j.comptc.2013.10.006
Ferrighi, 2016, Charge Carriers Separation at the Graphene/(101) Anatase TiO2 Interface, Adv. Mater. Interfaces, 3, 1500624, 10.1002/admi.201500624
Martins, 2018, TiO2/graphene and TiO2/graphene oxide nanocomposites for photocatalytic applications: A computer modeling and experimental study, Compos. B. Eng., 145, 39, 10.1016/j.compositesb.2018.03.015
Du, 2011, Hybrid Graphene/Titania Nanocomposite: Interface Charge Transfer, Hole Doping, and Sensitization for Visible Light Response, J. Phys. Chem. Lett., 2, 894, 10.1021/jz2002698
Long, 2012, Photo-induced charge separation across the graphene-TiO2 interface is faster than energy losses: a time-domain ab initio analysis, J. Am. Chem. Soc., 134, 14238, 10.1021/ja3063953
Gillespie, 2017, Electronic Structure and Charge Transfer in the TiO2 Rutile (110)/Graphene Composite Using Hybrid DFT Calculations, J. Phys. Chem. C, 121, 4158, 10.1021/acs.jpcc.6b12506
Pereira, 2009, Tight-binding approach to uniaxial strain in graphene, Phys. Rev. B, 80, 045401, 10.1103/PhysRevB.80.045401
Choi, 2010, Effects of strain on electronic properties of graphene, Phys. Rev. B (R), 81, 081407, 10.1103/PhysRevB.81.081407
Kerszberg, 2015, Ab Initio Strain Engineering of Graphene: Opening Bandgaps up to 1 eV, RSC Adv., 5, 43810, 10.1039/C5RA03422A
Kumar, 2017, Interfacial Charge Transfer in Photoelectrochemical Processes, Adv. Mater. Interfaces, 4, 1600981, 10.1002/admi.201600981
Giannozzi, 2017, Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys.: Condens. Matter, 29, 465901
Grimme, 2006, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comp. Chem., 27, 1787, 10.1002/jcc.20495
Burdett, 1987, Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K, J. Am. Chem. Soc., 109, 3639, 10.1021/ja00246a021
Mo, 1995, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite, Phys. Rev. B, 51, 13023, 10.1103/PhysRevB.51.13023
Mishra, 2018, Quantum-mechanical process of carbonate complex formation and large-scale anisotropy in the adsorption energy of CO2 on anatase TiO2 (001) surface, Phys. Rev. Mater., 2, 115801, 10.1103/PhysRevMaterials.2.115801
Mishra, 2020, Facet Dependent Catalytic Activities of Anatase TiO2 for CO2 Adsorption and Conversion, Appl. Surf. Sci., 531, 147330, 10.1016/j.apsusc.2020.147330
Stradi, 2017, Method for determining optimal supercell representation of interfaces, J. Phys.: Condens. Matter, 29, 185901
Nanda, 2009, Strain and electric field modulation of the electronic structure of bilayer graphene, Phys. Rev. B, 80, 165430, 10.1103/PhysRevB.80.165430
Ohta, 2006, Controlling the Electronic Structure of Bilayer Graphene, Science, 313, 951, 10.1126/science.1130681
Cocco, 2010, Gap opening in graphene by shear strain, Phys. Rev. B, 81, 241412, 10.1103/PhysRevB.81.241412
Gómez-Arias, 2016, Analytical calculation of electron group velocity surfaces in uniform strained graphene, Int. J. Mod. Phys. B, 30, 1, 10.1142/S021797921550263X