Electronic structure of graphene/TiO2 interface: Design and functional perspectives

Applied Surface Science - Tập 542 - Trang 148709 - 2021
Shashi B. Mishra1, Somnath C. Roy2, B.R.K. Nanda1
1Condensed Matter Theory and Computational Lab, Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
2Environmental Nanotechnology Lab, Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India

Tài liệu tham khảo

Kamat, 2010, Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support, J. Phys. Chem. Lett., 1, 520, 10.1021/jz900265j Zhang, 2010, TiO2-Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO2-Graphene Truly Different from Other TiO2-Carbon Composite Materials?, ACS Nano, 4, 7303, 10.1021/nn1024219 Zhang, 2011, Photocatalytic Patterning and Modification of Graphene, J. Am. Chem. Soc., 133, 2706, 10.1021/ja109934b Xiang, 2012, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev., 41, 782, 10.1039/C1CS15172J Morales-Torres, 2012, Design of graphene-based TiO2 photocatalysts-a review, Environ. Sci. Pollut. Res., 19, 3676, 10.1007/s11356-012-0939-4 Cao, 2017, Role of graphene in enhancing the mechanical properties of TiO2/graphene heterostructures, Nanoscale, 9, 11678, 10.1039/C7NR03049E Low, 2017, Heterojunction Photocatalysts, Adv. Mater., 29, 1601694, 10.1002/adma.201601694 Liu, 2018, Graphene Grown on Anatase-TiO2 Nanosheets: Enhanced Photocatalytic Activity on Basis of a Well-Controlled Interface, J. Phys. Chem. C, 122, 6388, 10.1021/acs.jpcc.7b12305 Manga, 2009, Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties, Adv. Funct. Mater., 19, 3638, 10.1002/adfm.200900891 Wang, 2012, Large Ultrathin Anatase TiO2 Nanosheets with Exposed 001 Facets on Graphene for Enhanced Visible Light Photocatalytic Activity, J. Phys. Chem. C, 116, 19893, 10.1021/jp306498b Du, 2011, Hierarchically Ordered Macro-Mesoporous TiO2-Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities, ACS Nano, 5, 590, 10.1021/nn102767d Lee, 2012, Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene, Adv. Mater., 24, 1084, 10.1002/adma.201104110 Xiang, 2012, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles, J. Am. Chem. Soc., 134, 6575, 10.1021/ja302846n Kiarii, 2018, Recent advances in titanium dioxide/graphene photocatalyst materials as potentials of energy generation, Bull. Mater. Sci., 41, 75, 10.1007/s12034-018-1593-3 Zhang, 2017, Interface charge transfer and enhanced visible light response of graphene/anatase TiO2(110) systems with and without oxygen vacancy: A DFT+U calculation, Appl. Surf. Sci., 420, 105, 10.1016/j.apsusc.2017.05.142 Hashimoto, 2005, TiO2 Photocatalysis: A Historical Overview and Future Prospects, Jap. J. Appl. Phys., 44, 8269, 10.1143/JJAP.44.8269 Linsebigler, 1995, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev., 95, 735, 10.1021/cr00035a013 Henderson, 2011, A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep., 66, 185, 10.1016/j.surfrep.2011.01.001 Zheng, 2020, Photo/Electrochemical Applications of Metal Sulfide/TiO2 Heterostructures, Adv. Energy Mater., 10, 1902355, 10.1002/aenm.201902355 Xie, 2013, Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting, Adv. Mater., 25, 3820, 10.1002/adma.201301207 Singh, 2015, Computational Screening of 2D Materials for Photocatalysis, J. Phys. Chem. Lett., 6, 1087, 10.1021/jz502646d Mishra, 2020, Fluorine intercalated graphene: Formation of a two-dimensional spin lattice through pseudoatomization, Phys. Rev. Mater., 4, 074411, 10.1103/PhysRevMaterials.4.074411 Hu, 2017, Two-dimensional van der Waals heterojunctions for functional materials and devices, J. Mater. Chem. C, 5, 12289, 10.1039/C7TC04697A Du, 2011, Electronic Functionality in Graphene-Based Nanoarchitectures: Discovery and Design via First-Principles Modeling, J. Phys. Chem. Lett., 2, 73, 10.1021/jz101347a Gao, 2013, Interfacial Charge Transfer and Enhanced Photocatalytic Mechanisms for the Hybrid Graphene/Anatase TiO2 (001) Nanocomposites, J. Phys. Chem. C, 117, 16022, 10.1021/jp403241d Yang, 2017, Hybrid TiO2/graphene derivatives nanocomposites: is functionalized graphene better than pristine graphene for enhanced photocatalytic activity?, Catal. Sci. Technol., 7, 1423, 10.1039/C6CY02224C Yang, 2013, Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment, ACS Nano, 7, 1504, 10.1021/nn305288z Li, 2013, A LDA+U study of the hybrid graphene/anatase TiO2 nanocomposites: Interfacial properties and visible light response, Comput. Theor. Chem., 1025, 30, 10.1016/j.comptc.2013.10.006 Ferrighi, 2016, Charge Carriers Separation at the Graphene/(101) Anatase TiO2 Interface, Adv. Mater. Interfaces, 3, 1500624, 10.1002/admi.201500624 Martins, 2018, TiO2/graphene and TiO2/graphene oxide nanocomposites for photocatalytic applications: A computer modeling and experimental study, Compos. B. Eng., 145, 39, 10.1016/j.compositesb.2018.03.015 Du, 2011, Hybrid Graphene/Titania Nanocomposite: Interface Charge Transfer, Hole Doping, and Sensitization for Visible Light Response, J. Phys. Chem. Lett., 2, 894, 10.1021/jz2002698 Long, 2012, Photo-induced charge separation across the graphene-TiO2 interface is faster than energy losses: a time-domain ab initio analysis, J. Am. Chem. Soc., 134, 14238, 10.1021/ja3063953 Gillespie, 2017, Electronic Structure and Charge Transfer in the TiO2 Rutile (110)/Graphene Composite Using Hybrid DFT Calculations, J. Phys. Chem. C, 121, 4158, 10.1021/acs.jpcc.6b12506 Pereira, 2009, Tight-binding approach to uniaxial strain in graphene, Phys. Rev. B, 80, 045401, 10.1103/PhysRevB.80.045401 Choi, 2010, Effects of strain on electronic properties of graphene, Phys. Rev. B (R), 81, 081407, 10.1103/PhysRevB.81.081407 Kerszberg, 2015, Ab Initio Strain Engineering of Graphene: Opening Bandgaps up to 1 eV, RSC Adv., 5, 43810, 10.1039/C5RA03422A Kumar, 2017, Interfacial Charge Transfer in Photoelectrochemical Processes, Adv. Mater. Interfaces, 4, 1600981, 10.1002/admi.201600981 Giannozzi, 2017, Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys.: Condens. Matter, 29, 465901 Grimme, 2006, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comp. Chem., 27, 1787, 10.1002/jcc.20495 Burdett, 1987, Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K, J. Am. Chem. Soc., 109, 3639, 10.1021/ja00246a021 Mo, 1995, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite, Phys. Rev. B, 51, 13023, 10.1103/PhysRevB.51.13023 Mishra, 2018, Quantum-mechanical process of carbonate complex formation and large-scale anisotropy in the adsorption energy of CO2 on anatase TiO2 (001) surface, Phys. Rev. Mater., 2, 115801, 10.1103/PhysRevMaterials.2.115801 Mishra, 2020, Facet Dependent Catalytic Activities of Anatase TiO2 for CO2 Adsorption and Conversion, Appl. Surf. Sci., 531, 147330, 10.1016/j.apsusc.2020.147330 Stradi, 2017, Method for determining optimal supercell representation of interfaces, J. Phys.: Condens. Matter, 29, 185901 Nanda, 2009, Strain and electric field modulation of the electronic structure of bilayer graphene, Phys. Rev. B, 80, 165430, 10.1103/PhysRevB.80.165430 Ohta, 2006, Controlling the Electronic Structure of Bilayer Graphene, Science, 313, 951, 10.1126/science.1130681 Cocco, 2010, Gap opening in graphene by shear strain, Phys. Rev. B, 81, 241412, 10.1103/PhysRevB.81.241412 Gómez-Arias, 2016, Analytical calculation of electron group velocity surfaces in uniform strained graphene, Int. J. Mod. Phys. B, 30, 1, 10.1142/S021797921550263X