Electronic structure of β-NiOOH with hydrogen vacancies and implications for energy conversion applications

Springer Science and Business Media LLC - Tập 7 Số 2 - Trang 206-213 - 2017
Vicky Fidelsky1, David Furman2, Yuri Khodorkovsky2, Yuval Elbaz3, Yehuda Zeiri2, Maytal Caspary Toroker3
1The Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
2Division of Chemistry, NRCN, P.O. Box 9001, Beer-Sheva, 84190, Israel
3Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

M.L. Bustamante, B. Hubler, G. Gaustad, and C.W. Babbitt: Life cycle assessment of jointly produced solar energy materials: challenges and best practices. Sol. Energy Mater. Sol. Cells 156, 11 (2016).

K. Sivula and R. van de Krol: Semiconducting materials for photoelectro-chemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

M.C. Toroker and E.A. Carter: Transition metal oxide alloys as potential solar energy conversion materials. J. Mater. Chem. A 1, 2474 (2013).

A. Kudo and Y. Miseki: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009).

L. Trotochaud, J.K. Ranney, K.N. Williams, and S.W. Boettcher: Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253 (2012).

F. Bardé, M.R. Palacín, B. Beaudoin, and J.M. Tarascon: Ozonation: a unique route to prepare nickel oxyhydroxides. Synthesis optimization and reaction mechanism study. Chem. Mater. 17, 470 (2005).

L. Trotochaud, S.L. Young, J.K. Ranney, and S.W. Boettcher: Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744 (2014).

V. Fidelsky, V. Butera, J. Zaffran, and M.C. Toroker: Three fundamental questions on one of our best water oxidation catalysts: a critical perspective. Theor. Chem. Acc. 135, 162 (2016).

A.J. Tkalych, K. Yu, and E.A. Carter: Structural and electronic features of β-Ni(OH)2 and β-NiOOH from first principles. J. Phys. Chem. C 119, 24315 (2015).

J.C. Conesa: Electronic structure of the (undoped and Fe-doped) NiOOH O2 evolution electrocatalyst. J. Phys. Chem. C 120, 18999 (2016).

A. Van der Ven, D. Morgan, Y.S. Meng, and G. Ceder: Phase stability of nickel hydroxides and oxyhydroxides. J. Electrochem. Soc. 153, A210 (2006).

A. Delahaye-Vidal, B. Beaudoin, N. Sac-Epée, K. Tekaia-Elhsissen, A. Audemer, and M. Figlarz: Structural and textural investigations of the nickel hydroxide electrode. Solid State Ion. 84, 239 (1996).

V. Fidelsky and M. Caspary Toroker: Enhanced water oxidation catalysis of nickel oxyhydroxide through the addition of vacancies. J. Phys. Chem. C 120, 25405 (2016).

O. Diaz-Morales, D. Ferrus-Suspedra, and M.T.M. Koper: The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 7, 2639 (2016).

H.V. Keer: Principles of the Solid State (J). Wiley & Sons, New York, 1993).

H.L. Tuller: Defect engineering: design tools for solid state electrochemical devices. Electrochim. Acta 48, 2879 (2003).

G. Kresse and J. Hafner: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

G. Kresse and J. Furthmüller: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A. P. Sutton: Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998).

J.P. Perdew, M. Ernzerhof, and K. Burke: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982 (1996).

Y.-F. Li and A. Selloni: Mosaic texture and double c-axis periodicity of β-NiOOH: insights from first-principles and genetic algorithm calculations. J. Phys. Chem. Lett. 5, 3981 (2014).

Y.-F. Li and A. Selloni: Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx. ACS Catal. 4, 1148 (2014).

J. Zaffran and M. Caspary Toroker: Benchmarking density functional theory based methods to model NiOOH material properties: Hubbard and van der Waals corrections versus hybrid functionals. J. Chem. Theory Comput. 12, 3807 (2016).

P.E. Blöchl: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

N. Fernandez, Y. Ferro, and D. Kato: Hydrogen diffusion and vacancies formation in tungsten: density functional theory calculations and statistical models. Acta Mater. 94, 307 (2015).

M.C. Toroker and E.A. Carter: Strategies to suppress cation vacancies in metal oxide alloys: consequences for solar energy conversion. J. Mater. Sci. 50, 5715 (2015).

J. Rossmeisl, A. Logadottir, and J.K. Nørskov: Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319, 178 (2005).

M.S. Burke, S. Zou, L.J. Enman, J.E. Kellon, C.A. Gabor, E. Pledger, and S.W. Boettcher: Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy)hydroxides in alkaline media. J. Phys. Chem. Lett. 6, 3737 (2015).

F. Fuchs and F. Bechstedt: Indium-oxide polymorphs from first principles: quasiparticle electronic states. Phys. Rev. B 77, 155107 (2008).

C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt: Quasiparticle band structures of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO. Phys. Rev. B 79, 235114 (2009).

L.Y. Isseroff and E.A. Carter: Importance of reference Hamiltonians containing exact exchange for accurate one-shot GW calculations of Cu2O. Phys. Rev. B 85, 235142 (2012).

V. Fidelsky and M. Caspary Toroker: Engineering band edge positions of nickel oxyhydroxide through facet selection. J. Phys. Chem. C 120, 8104 (2016).

N. Yatom and M. Toroker: Hazardous doping for photo-electrochemical conversion: the case of Nb-doped Fe2O3 from first principles. Molecules 20, 19900 (2015).

O. Neufeld and M.C. Toroker: Platinum-doped α-Fe2O3 for enhanced water splitting efficiency: a DFT+U study. J. Phys. Chem. C 119, 5836 (2015).

P. Liao, M.C. Toroker, and E.A. Carter: Electron transport in pure and doped hematite. Nano Lett. 11, 1775 (2011).

A.B. Muñoz-García, A.M. Ritzmann, M. Pavone, J.A. Keith, and E. A. Carter: Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics. Acc. Chem. Res. 47, 3340 (2014).