Electronic, structural, optical, and photocatalytic properties of graphitic carbon nitride

New Journal of Chemistry - Tập 43 Số 34 - Trang 13647-13653
Luís Henrique Cardozo Amorin1,2,3,4, Victor Yuudi Suzuki1,2,3,4, Natália Herédia de Paula1,2,3,4, José Leonil Duarte1,5,3,6, Marco Aurélio Toledo da Silva1,7,3,8, Carlton A. Taft1,9,10,11, Felipe A. La Porta1,2,3,4
1Brazil
2Federal Technological University of Paraná
3Londrina
4Nanotechnology and Computational Chemistry Laboratory
5Grupo de Óptica e Optoeletrônica (GOO)
6Universidade Estadual de Londrina (UEL)
7Dispositivos Fotônicos e Materiais Nanoestruturados (DFMNano)
8Universidade Tecnológica Federal do Paraná (UTFPR)
9CBPF—Centro Brasileiro de Pesquisas Físicas
10Departamento de Materia Condensada
11Rio de Janeiro

Tóm tắt

Graphitic carbon nitride (g-C3N4)-based materials exhibit an organized layered porous structure and a band position optimum for the development of various optoelectronic devices and photocatalysts.

Từ khóa


Tài liệu tham khảo

Wang, 2017, Appl. Catal., B, 209, 285, 10.1016/j.apcatb.2017.03.019

Dong, 2018, Appl. Catal., B, 230, 65, 10.1016/j.apcatb.2018.02.044

Bao, 2016, Nano-Micro Lett., 8, 182, 10.1007/s40820-015-0076-y

Krivtsov, 2017, Appl. Catal., B, 204, 430, 10.1016/j.apcatb.2016.11.049

Fagan, 2016, Materials, 9, 286, 10.3390/ma9040286

Wen, 2017, Appl. Surf. Sci., 391, 72, 10.1016/j.apsusc.2016.07.030

Bu, 2016, ACS Appl. Mater. Interfaces, 8, 31419, 10.1021/acsami.6b10516

She, 2017, Appl. Catal., B, 202, 112, 10.1016/j.apcatb.2016.09.013

Wang, 2014, J. Mater. Chem. A, 2, 2885, 10.1039/c3ta14576j

Schaber, 2004, Thermochim. Acta, 424, 131, 10.1016/j.tca.2004.05.018

Bernhard, 2012, Appl. Catal., B, 115–116, 129, 10.1016/j.apcatb.2011.12.013

Xu, 2013, Phys. Chem. Chem. Phys., 15, 4510, 10.1039/c3cp44402c

Thomas, 2008, J. Mater. Chem., 18, 4893, 10.1039/b800274f

Wang, 2013, Environ. Sci. Technol., 47, 8724, 10.1021/es4013504

Liu, 2011, J. Mater. Chem., 21, 14398, 10.1039/c1jm12620b

Lei, 2008, J. Eur. Ceram. Soc., 28, 1671, 10.1016/j.jeurceramsoc.2007.11.013

Yuan, 2015, Nanoscale, 7, 12343, 10.1039/C5NR02905H

E. Longo and F.de Almeida La Porta , Recent Advances in Complex Functional Materials , Springer International Publishing , Cham , 2017

M. J. Frisch , G. W.Trucks , H. B.Schlegel , G. E.Scuseria , M. A.Robb , J. R.Cheeseman , G.Scalmani , V.Barone , B.Mennucci , G. A.Petersson , H.Nakatsuji , M.Caricato , X.Li , H. P.Hratchian , A. F.Izmaylov , J.Bloino , G.Zheng , J. L.Sonnenberg , M.Hada , E. M. M.Ehara , K.Toyota , R.Fukuda , J.Hasegawa , M.Ishida , T.Nakajima , Y.Honda , O.Kitao , H.Nakai , V. T. T.Vreven , J. A. J.Montgomery , J. E.Peralta , F.Ogliaro , M.Bearpark , J. J.Heyd , E.Brothers , K. N.Kudin , V. N.Staroverov , R.Kobayashi , J.Normand , K.Raghavachari , A.Rendell , J. C.Burant , S. S.Iyengar , J.Tomasi , M.Cossi , N.Rega , J. M.Millam , M.Klene , J. E.Knox , J. B.Cross , V.Bakken , C.Adamo , J.Jaramillo , R.Gomperts , R. E.Stratmann , O.Yazyev , A. J.Austin , R.Cammi , C.Pomelli , J. W.Ochterski , R. L.Martin , K.Morokuma , V. G.Zakrzewski , G. A.Voth , P.Salvador , J. J.Dannenberg , S.Dapprich , A. D.Daniels , Ö.Farkas , J. B.Foresman , J. V.Ortiz , J.Cioslowski and D. J.Fox , Gaussian 09 Revision B.01 , Gaussian Inc. , Wallingford, CT , 2009

Becke, 2005, J. Chem. Phys., 123, 154101, 10.1063/1.2065267

Lee, 1988, Phys. Rev. B: Condens. Matter Mater. Phys., 37, 785, 10.1103/PhysRevB.37.785

Porta, 2011, J. Phys. Chem. A, 115, 824, 10.1021/jp108790w

Silva, 2016, Curr. Phys. Chem., 5, 206, 10.2174/187794680503160223163623

O’boyle, 2008, J. Comput. Chem., 29, 839, 10.1002/jcc.20823

Bojdys, 2008, Chem. – Eur. J., 14, 8177, 10.1002/chem.200800190

Liu, 2016, Sci. Rep., 6, 39531, 10.1038/srep39531

Pawar, 2016, Sci. Rep., 6, 31147, 10.1038/srep31147

Tong, 2015, RSC Adv., 5, 88149, 10.1039/C5RA16988G

A. Guinier , X-Ray Diffraction: In Crystals, Imperfect Crystals, and Amorphous Bodies , San Francisco, USA , 1963

Tyborski, 2013, J. Phys.: Condens. Matter, 25, 395402

Yin, 2017, RSC Adv., 7, 44001, 10.1039/C7RA07707F

da Silva, 2017, Appl. Catal., B, 216, 70, 10.1016/j.apcatb.2017.05.038

Burda, 2005, Chem. Rev., 105, 1025, 10.1021/cr030063a

de Souza, 2018, Curr. Opin. Electrochem., 9, 121, 10.1016/j.coelec.2018.03.007

Montiel, 2017, Curr. Opin. Electrochem., 1, 34, 10.1016/j.coelec.2016.12.007

Fabbro, 2015, Sci. Technol. Adv. Mater., 16, 065002, 10.1088/1468-6996/16/6/065002

Wulff, 1901, Z. Kristallogr. – Cryst. Mater., 34, 449, 10.1524/zkri.1901.34.1.449

Sugimoto, 2003, Chem. Eng. Technol., 26, 313, 10.1002/ceat.200390048

Pereira, 2016, Phys. Chem. Chem. Phys., 18, 21966, 10.1039/C6CP00575F

Barnard, 2012, Acc. Chem. Res., 45, 1688, 10.1021/ar3000184

Fievet, 2018, Chem. Soc. Rev., 47, 5187, 10.1039/C7CS00777A

Yang, 2016, Appl. Catal., B, 193, 22, 10.1016/j.apcatb.2016.03.060

Boonprakob, 2014, J. Colloid Interface Sci., 417, 402, 10.1016/j.jcis.2013.11.072

Tang, 2015, RSC Adv., 5, 91979, 10.1039/C5RA18096A

Zuluaga, 2015, Phys. Chem. Chem. Phys., 17, 957, 10.1039/C4CP05164E

Melissen, 2015, J. Phys. Chem. C, 119, 25188, 10.1021/acs.jpcc.5b07059

Lin, 2018, ChemSusChem, 11, 114, 10.1002/cssc.201701984

La Porta, 2014, J. Mater. Chem. C, 2, 10164, 10.1039/C4TC01248H

Pottker, 2018, Ceram. Int., 44, 17290, 10.1016/j.ceramint.2018.06.190

Oliveira, 2016, Mater. Res. Bull., 81, 1, 10.1016/j.materresbull.2016.04.024

Wang, 2012, Carbon, 50, 3561, 10.1016/j.carbon.2012.03.028

Zhang, 2013, Sci. Rep., 3, 1943, 10.1038/srep01943

Reshak, 2018, Phys. Chem. Chem. Phys., 20, 22972, 10.1039/C8CP02898B

Hu, 2016, Chemosphere, 148, 34, 10.1016/j.chemosphere.2016.01.002

Kang, 2017, Appl. Catal., B, 211, 266, 10.1016/j.apcatb.2017.04.050