Electronic properties and applications of MXenes: a theoretical review

Journal of Materials Chemistry C - Tập 5 Số 10 - Trang 2488-2503
Mohammad Khazaei1,2,3, Ahmad Ranjbar1,2,3, M. Arai4,2,5,6, Taizo Sasaki4,2,5,6, Seiji Yunoki7,8,1,9
1Computational Materials Science Research Team, RIKEN Advanced Institute for Computational Science (AICS), Kobe, Hyogo 650-0047, Japan
2Japan
3RIKEN Advanced Institute for Computational Science (AICS)
4International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
5National Institute for Materials Science (NIMS)
6Tsukuba 305-0044
7Computational Condensed Matter Physics Laboratory
8Computational Condensed Matter Physics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
9Computational Quantum Matter Research Team, RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan

Tóm tắt

The recent chemical exfoliation of layered MAX phase compounds to novel two-dimensional transition metal carbides and nitrides, the so-called MXenes, has brought a new opportunity to materials science and technology.

Từ khóa


Tài liệu tham khảo

Wang, 2012, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193

Butler, 2013, ACS Nano, 7, 2898, 10.1021/nn400280c

Fiori, 2014, Nat. Nanotechnol., 9, 768, 10.1038/nnano.2014.207

Bhimanapati, 2015, ACS Nano, 9, 11509, 10.1021/acsnano.5b05556

Coleman, 2011, Science, 331, 568, 10.1126/science.1194975

Zhang, 2015, ACS Nano, 9, 9451, 10.1021/acsnano.5b05040

Naguib, 2011, Adv. Mater., 23, 4248, 10.1002/adma.201102306

Naguib, 2012, ACS Nano, 6, 1322, 10.1021/nn204153h

Cover, 2009, J. Phys.: Condens. Matter, 21, 305403

Barsoum, 2000, Prog. Solid State Chem., 28, 201, 10.1016/S0079-6786(00)00006-6

Sun, 2011, Int. Mater. Rev., 56, 143, 10.1179/1743280410Y.0000000001

Khazaei, 2014, J. Phys.: Condens. Matter, 26, 505503

Khazaei, 2014, Sci. Technol. Adv. Mater., 15, 014208, 10.1088/1468-6996/15/1/014208

Ashton, 2016, Phys. Rev. B, 94, 054116, 10.1103/PhysRevB.94.054116

Xu, 2015, Nat. Mater., 14, 1135, 10.1038/nmat4374

Geng, 2017, 2D Mater., 4, 011012, 10.1088/2053-1583/aa51b7

Anasori, 2015, ACS Nano, 9, 9507, 10.1021/acsnano.5b03591

Halim, 2014, Chem. Mater., 26, 2374, 10.1021/cm500641a

Mariano, 2016, Nanoscale, 8, 16371, 10.1039/C6NR03682A

Yang, 2017, J. Phys. Chem. Lett., 8, 859, 10.1021/acs.jpclett.6b03064

Lai, 2015, Nanoscale, 7, 19390, 10.1039/C5NR06513E

Lukatskaya, 2013, Science, 341, 1502, 10.1126/science.1241488

Chidiu, 2014, Nature, 516, 78, 10.1038/nature13970

Rakhi, 2015, Chem. Mater., 27, 5314, 10.1021/acs.chemmater.5b01623

Naguib, 2013, J. Am. Chem. Soc., 135, 15966, 10.1021/ja405735d

Xie, 2014, ACS Nano, 8, 9606, 10.1021/nn503921j

Shahzad, 2016, Science, 353, 1137, 10.1126/science.aag2421

Zhang, 2013, Angew. Chem., Int. Ed., 52, 4361, 10.1002/anie.201300285

Xue, 2017, RSC Adv., 7, 4312, 10.1039/C6RA27653A

Peng, 2014, J. Am. Chem. Soc., 136, 4113, 10.1021/ja500506k

Guo, 2015, J. Phys. Chem. C, 119, 20923, 10.1021/acs.jpcc.5b05426

Chen, 2015, Chem. Commun., 51, 314, 10.1039/C4CC07220K

Mashtalir, 2014, J. Mater. Chem. A, 2, 14334, 10.1039/C4TA02638A

Fan, 2017, New J. Chem., 10.1039/C6NJ02695H

Seh, 2016, ACS Energy Lett., 1, 589, 10.1021/acsenergylett.6b00247

Liu, 2016, Adsorption, 22, 915, 10.1007/s10450-016-9795-8

Ran, 2017, Nat. Commun., 8, 13907, 10.1038/ncomms13907

Lin, 2017, Nano Lett., 17, 2017

Khazaei, 2013, Adv. Funct. Mater., 23, 2185, 10.1002/adfm.201202502

Enyashin, 2013, J. Phys. Chem. C, 117, 13637, 10.1021/jp401820b

Xie, 2013, Phys. Rev. B: Condens. Matter Mater. Phys., 87, 235441, 10.1103/PhysRevB.87.235441

Khazaei, 2016, Phys. Rev. B, 93, 205125, 10.1103/PhysRevB.93.205125

Feng, 2017, J. Electron. Mater., 10.1007/s11664-017-5311-5

Si, 2015, ACS Appl. Mater. Interfaces, 7, 17510, 10.1021/acsami.5b05401

He, 2016, J. Mater. Chem. C, 4, 6500, 10.1039/C6TC01287F

Je, 2016, Thin Solid Films, 619, 131, 10.1016/j.tsf.2016.11.014

Gao, 2016, Nanoscale, 8, 8986, 10.1039/C6NR01333C

Yang, 2016, Phys. Chem. Chem. Phys., 18, 12914, 10.1039/C6CP00138F

Lashgari, 2014, Solid State Commun., 195, 61, 10.1016/j.ssc.2014.06.008

Bai, 2016, RSC Adv., 6, 35731, 10.1039/C6RA03090D

Khazaei, 2014, Phys. Chem. Chem. Phys., 16, 7841, 10.1039/C4CP00467A

Gandi, 2016, Chem. Mater., 28, 1647, 10.1021/acs.chemmater.5b04257

Kumar, 2016, Phys. Rev. B, 94, 035405, 10.1103/PhysRevB.94.035405

Zha, 2016, Nanoscale, 8, 6110, 10.1039/C5NR08639F

Zha, 2016, Sci. Rep., 6, 27971, 10.1038/srep27971

Zha, 2016, J. Phys. Chem. C, 120, 15082, 10.1021/acs.jpcc.6b04192

Yu, 2015, ACS Appl. Mater. Interfaces, 7, 13707, 10.1021/acsami.5b03737

Gan, 2013, J. Mater. Chem. A, 1, 13672, 10.1039/c3ta12032e

Ling, 2016, Adv. Sci., 3, 1600180, 10.1002/advs.201600180

Ling, 2016, Chem. Mater., 28, 9026, 10.1021/acs.chemmater.6b03972

Gao, 2017, ACS Catal., 7, 494, 10.1021/acscatal.6b02754

Guo, 2016, J. Mater. Chem. A, 4, 11446, 10.1039/C6TA04414J

Zhang, 2016, J. Mater. Chem. A, 4, 12913, 10.1039/C6TA04628B

Hu, 2013, J. Phys. Chem. A, 117, 14253, 10.1021/jp409585v

Hu, 2014, Int. J. Hydrogen Energy, 39, 10606, 10.1016/j.ijhydene.2014.05.037

Zhang, 2017, J. Chem. Phys., 146, 034705, 10.1063/1.4974085

Weng, 2015, Phys. Rev. B: Condens. Matter Mater. Phys., 92, 075436, 10.1103/PhysRevB.92.075436

Khazaei, 2016, Phys. Rev. B, 94, 125152, 10.1103/PhysRevB.94.125152

Li, 2016, Comput. Mater. Sci., 124, 8, 10.1016/j.commatsci.2016.07.008

Si, 2016, Nano Lett., 16, 6584, 10.1021/acs.nanolett.6b03118

Si, 2016, J. Mater. Chem. C, 4, 11524, 10.1039/C6TC04560J

Khazaei, 2015, Phys. Rev. B: Condens. Matter Mater. Phys., 92, 075411, 10.1103/PhysRevB.92.075411

Gan, 2013, Phys. Rev. B: Condens. Matter Mater. Phys., 87, 245307, 10.1103/PhysRevB.87.245307

Zhao, 2015, J. Appl. Phys., 117, 085306, 10.1063/1.4913480

Lee, 2015, ACS Appl. Mater. Interfaces, 7, 7163, 10.1021/acsami.5b00063

Liu, 2016, J. Am. Chem. Soc., 138, 15853, 10.1021/jacs.6b10834

Fashandi, 2015, Phys. Rev. B: Condens. Matter Mater. Phys., 92, 155142, 10.1103/PhysRevB.92.155142

Ivanovskii, 2013, Russ. Chem. Rev., 82, 735, 10.1070/RC2013v082n08ABEH004398

Tang, 2015, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 5, 360

Naguib, 2014, Adv. Mater., 26, 992, 10.1002/adma.201304138

Naguib, 2015, Acc. Chem. Res., 48, 128, 10.1021/ar500346b

Lei, 2015, Front. Phys., 10, 276, 10.1007/s11467-015-0493-x

Ng, 2017, J. Mater. Chem. A, 5, 3039, 10.1039/C6TA09817G

Anasori, 2017, Nat. Rev., 1, 16098

Perdew, 1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Heyd, 2006, J. Chem. Phys., 124, 219906, 10.1063/1.2204597

Baroni, 2001, Rev. Mod. Phys., 73, 515, 10.1103/RevModPhys.73.515

Grimme, 2006, Comput. Chem., 27, 1787, 10.1002/jcc.20495

Liechtenstein, 1995, Phys. Rev. B: Condens. Matter Mater. Phys., 52, R5467, 10.1103/PhysRevB.52.R5467

Dudarev, 1998, Phys. Rev. B: Condens. Matter Mater. Phys., 57, 1505, 10.1103/PhysRevB.57.1505

Cohen, 2008, Science, 321, 729

J. F. Nye , Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, New York, 2010

Hope, 2016, Phys. Chem. Chem. Phys., 18, 5099, 10.1039/C6CP00330C

Wang, 2016, Chem. Mater., 28, 349, 10.1021/acs.chemmater.5b04250

Sharma, 2016, J. Phys. Chem. C, 120, 28131, 10.1021/acs.jpcc.6b10241

Magne, 2016, Phys. Chem. Chem. Phys., 18, 30946, 10.1039/C6CP05985F

Fredrickson, 2016, J. Phys. Chem. C, 120, 28432, 10.1021/acs.jpcc.6b09109

Srivastava, 2016, ACS Appl. Mater. Interfaces, 8, 24256, 10.1021/acsami.6b08413

Mishra, 2016, Phys. Chem. Chem. Phys., 18, 11073, 10.1039/C5CP07609A

Meshkini, 2015, Scr. Mater., 108, 147, 10.1016/j.scriptamat.2015.07.003

Zhou, 2016, Angew. Chem., Int. Ed., 55, 5008, 10.1002/anie.201510432

Yang, 2016, J. Am. Ceram. Soc., 99, 660, 10.1111/jace.13922

Urbankowski, 2016, Nanoscale, 8, 11385, 10.1039/C6NR02253G

Meshkian, 2017, Acta Mater., 125, 476, 10.1016/j.actamat.2016.12.008

Ashton, 2016, J. Phys. Chem. C, 120, 3550, 10.1021/acs.jpcc.5b11887

Hu, 2015, Phys. Chem. Chem. Phys., 17, 9997, 10.1039/C4CP05666C

Yorulmaz, 2016, Nanotechnology, 27, 335702, 10.1088/0957-4484/27/33/335702

Kurtoglu, 2012, MRS Commun., 2, 133, 10.1557/mrc.2012.25

Zha, 2015, Europhys. Lett., 111, 26007, 10.1209/0295-5075/111/26007

Borysiuk, 2015, Nanotechnology, 26, 265705, 10.1088/0957-4484/26/26/265705

Guo, 2015, Phys. Chem. Chem. Phys., 17, 15348, 10.1039/C5CP00775E

Fu, 2016, Phys. Rev. B, 94, 104103, 10.1103/PhysRevB.94.104103

Hu, 2016, Phys. Chem. Chem. Phys., 18, 20256, 10.1039/C6CP01699E

Karlsson, 2015, Nano Lett., 15, 4955, 10.1021/acs.nanolett.5b00737

Sang, 2016, ACS Nano, 10, 9193, 10.1021/acsnano.6b05240

Guo, 2015, RSC Adv., 5, 25403, 10.1039/C4RA17304J

Lee, 2014, ACS Appl. Mater. Interfaces, 6, 14724, 10.1021/am504233d

Yu, 2015, RSC Adv., 5, 30438, 10.1039/C5RA01586C

Lee, 2014, Phys. Chem. Chem. Phys., 16, 26273, 10.1039/C4CP03811H

Li, 2016, J. Phys. Chem. C, 120, 24857, 10.1021/acs.jpcc.6b08300

Fu, 2007, Phys. Rev. Lett., 98, 106803, 10.1103/PhysRevLett.98.106803

Fu, 2007, Phys. Rev. B: Condens. Matter Mater. Phys., 76, 045302, 10.1103/PhysRevB.76.045302

Hasan, 2010, Rev. Mod. Phys., 82, 3045, 10.1103/RevModPhys.82.3045

Qi, 2011, Rev. Mod. Phys., 83, 1057, 10.1103/RevModPhys.83.1057

Yan, 2012, Rep. Prog. Phys., 75, 096501, 10.1088/0034-4885/75/9/096501

Weng, 2015, Adv. Phys., 64, 227, 10.1080/00018732.2015.1068524

Silvi, 1994, Nature, 371, 683, 10.1038/371683a0

Zhao, 2014, Appl. Phys. Lett., 104, 133106, 10.1063/1.4870515

Hu, 2014, J. Phys. Chem. C, 118, 24274, 10.1021/jp507336x

Wang, 2016, J. Phys. Chem. C, 120, 18850, 10.1021/acs.jpcc.6b05224

Zhang, 2013, Nat. Commun., 4, 1443, 10.1038/ncomms2464

Yang, 2016, Phys. Chem. Chem. Phys., 18, 12914, 10.1039/C6CP00138F

Yang, 2016, Appl. Phys. Lett., 109, 203109, 10.1063/1.4967983

Dong, 2017, J. Phys. Chem. Lett., 8, 422, 10.1021/acs.jpclett.6b02751

Berdiyorov, 2015, Europhys. Lett., 111, 67002, 10.1209/0295-5075/111/67002

Hu, 2015, Sci. Rep., 5, 16329, 10.1038/srep16329

Leung, 2003, Phys. Rev. B: Condens. Matter Mater. Phys., 68, 195408, 10.1103/PhysRevB.68.195408

http://www.renewableenergyworld.com/hydrogen/tech.html

Zebarjadi, 2012, Energy Environ. Sci., 5, 5147, 10.1039/C1EE02497C

Singh, 1997, Phys. Rev. B: Condens. Matter Mater. Phys., 56, 1650, 10.1103/PhysRevB.56.R1650

May, 2009, Phys. Rev. B: Condens. Matter Mater. Phys., 79, 153101, 10.1103/PhysRevB.79.153101

Singh, 2010, Phys. Rev. B: Condens. Matter Mater. Phys., 81, 195217, 10.1103/PhysRevB.81.195217

Khazaei, 2009, J. Appl. Phys., 106, 094303, 10.1063/1.3247342

Venkataramanan, 2009, Chem. Phys., 359, 173, 10.1016/j.chemphys.2009.04.001

Handbook of batteries, ed. D. Linden and T. B. Reddy, McGraw-Hill, New York, 3rd edn, 2001

Tarascon, 2010, Nat. Chem., 2, 510, 10.1038/nchem.680

Bui, 2012, Appl. Phys. Express, 5, 125802, 10.1143/APEX.5.125802

Islam, 2014, Chem. Soc. Rev., 43, 185, 10.1039/C3CS60199D

Bui, 2015, Phys. Chem. Chem. Phys., 17, 30433, 10.1039/C5CP05323D

Bui, 2016, Phys. Chem. Chem. Phys., 18, 27226, 10.1039/C6CP05164B

Come, 2012, J. Electrochem. Soc., 159, A1368, 10.1149/2.003208jes

Mashtalir, 2013, Nat. Commun., 4, 1716, 10.1038/ncomms2664

Tang, 2012, J. Am. Chem. Soc., 134, 16909, 10.1021/ja308463r

Er, 2014, ACS Appl. Mater. Interfaces, 6, 11173, 10.1021/am501144q

Xie, 2014, J. Am. Chem. Soc., 136, 6385, 10.1021/ja501520b

Eames, 2014, J. Am. Chem. Soc., 136, 16270, 10.1021/ja508154e

Yang, 2015, Phys. Chem. Chem. Phys., 17, 5000, 10.1039/C4CP05140H

Pan, 2015, J. Mater. Chem. A, 3, 21486, 10.1039/C5TA06259D

Ashton, 2016, Appl. Phys. Lett., 108, 023901, 10.1063/1.4939745

Ji, 2016, Phys. Chem. Chem. Phys., 18, 4460, 10.1039/C5CP07311A

Ando, 2016, Appl. Phys. Express, 9, 015001, 10.7567/APEX.9.015001

Yu, 2016, J. Phys. Chem. C, 120, 5288, 10.1021/acs.jpcc.5b10366

Hu, 2016, RSC Adv., 6, 27467, 10.1039/C5RA25028E

Bai, 2016, RSC Adv., 6, 54999, 10.1039/C6RA04034A

Li, 2016, RSC Adv., 6, 81591, 10.1039/C6RA13491B

Zhu, 2016, Appl. Mater. Today, 5, 19, 10.1016/j.apmt.2016.07.005

Chen, 2016, Phys. Chem. Chem. Phys., 18, 32937, 10.1039/C6CP06018H

Persson, 2010, Phys. Rev. B: Condens. Matter Mater. Phys., 82, 125416, 10.1103/PhysRevB.82.125416

Toyoura, 2010, J. Phys. Chem. C, 114, 2375, 10.1021/jp910134u

Persson, 2010, J. Phys. Chem. Lett., 1, 1176, 10.1021/jz100188d

Zhang, 2015, J. Mater. Chem. A, 3, 4960, 10.1039/C4TA06557C

Guo, 2016, J. Phys. Chem. Lett., 7, 5280, 10.1021/acs.jpclett.6b02556

Zhao, 2015, J. Mater. Chem. C, 3, 879, 10.1039/C4TC01721H

Zhang, 2015, Nanoscale, 7, 16020, 10.1039/C5NR04717J

Hong, 2016, Phys. Rev. B, 93, 115412, 10.1103/PhysRevB.93.115412

Ponomarenko, 2011, Nat. Phys., 7, 958, 10.1038/nphys2114

Britnell, 2012, Science, 335, 947, 10.1126/science.1218461

Geiim, 2013, Nature, 499, 419, 10.1038/nature12385

Ma, 2014, J. Phys. Chem. C, 118, 5593, 10.1021/jp500861n

Gandi, 2017, J. Phys.: Condens. Matter, 29, 035504

Jeitschko, 1963, Monatsh. Chem., 94, 672, 10.1007/BF00913068

Xu, 2014, Phys. Rev. Lett., 112, 226801, 10.1103/PhysRevLett.112.226801