Electronic modulation and interface engineering of electrospun nanomaterials‐based electrocatalysts toward water splitting

Carbon Energy - Tập 3 Số 1 - Trang 101-128 - 2021
Wei Song1, Meixuan Li2, Ce Wang2, Xiaofeng Lu2
1State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People's Republic of China
2Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, People’s Republic of China

Tóm tắt

Abstract

Nowdays, electrocatalytic water splitting has been regarded as one of the most efficient means to approach the urgent energy crisis and environmental issues. However, to speed up the electrocatalytic conversion efficiency of their half reactions including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), electrocatalysts are usually essential to reduce their kinetic energy barriers. Electrospun nanomaterials possess a unique one‐dimensional structure for outstanding electron and mass transportation, large specific surface area, and the possibilities of flexibility with the porous feature, which are good candidates as efficient electrocatalysts for water splitting. In this review, we focus on the recent research progress on the electrospun nanomaterials‐based electrocatalysts for HER, OER, and overall water splitting reaction. Specifically, the insights of the influence of the electronic modulation and interface engineering of these electrocatalysts on their electrocatalytic activities will be deeply discussed and highlighted. Furthermore, the challenges and development opportunities of the electrospun nanomaterials‐based electrocatalysts for water splitting are featured. Based on the achievements of the significantly enhanced performance from the electronic modulation and interface engineering of these electrocatalysts, full utilization of these materials for practical energy conversion is anticipated.

Từ khóa


Tài liệu tham khảo

10.1038/nenergy.2017.125

10.1002/aenm.201601301

10.1038/s41570-016-0003

10.1126/science.aad4998

10.1002/adma.201502696

10.1039/C4CS00470A

10.1039/C4CS00448E

10.1002/adma.201808167

10.1016/j.matt.2019.09.011

10.1039/C9QI00799G

10.1002/aenm.201903120

10.1002/adfm.201910274

10.1021/acs.chemrev.9b00248

10.1039/C9CS00869A

10.1039/C9CS00607A

10.1039/C9CS00906J

10.1021/acsnano.8b06671

10.1002/anie.201710150

10.1021/ja5085157

10.1002/adma.201908201

10.1016/j.progpolymsci.2010.07.010

10.1002/smll.200900445

10.1002/advs.201600380

10.1002/adma.200390087

10.1021/acsami.6b12994

10.1016/S0266-3538(03)00178-7

10.1002/anie.200604646

10.1021/acs.chemrev.8b00593

10.1039/C8TB02878H

10.1016/j.coco.2018.12.005

10.1002/adfm.201801114

10.1016/j.coco.2019.06.003

10.1039/C7TB01058C

10.1002/adfm.201502499

10.1021/acsami.9b16420

10.1039/C9QM00296K

10.1016/j.cej.2020.124597

10.1016/j.progpolymsci.2017.12.003

10.1016/j.compositesb.2019.107074

Liu YT, 2020, Conductive and elastic TiO2 nanofibrous aerogels: a new concept toward self‐supported electrocatalysts with superior activity and durability, Angew Chem Int Ed

10.1002/cnma.202000010

10.1021/jacs.5b11986

10.1002/smll.201906782

10.1039/C9QI01516G

10.1021/acsanm.8b00945

Tao H, 2020, Two‐dimensional materials for energy conversion and storage, Prog Polym Sci, 111, 100637

10.1039/C9TA08030A

10.1021/nn501434a

10.1016/j.ccr.2020.213468

10.1002/adma.201703798

10.1002/chem.202000209

10.1002/smll.201703323

10.1002/anie.201502226

10.1021/jacs.9b12113

10.1002/anie.201602237

10.1021/cs500070x

10.1021/acsaem.8b00010

10.1149/2.1041912jes

10.1039/C9TA12613A

10.1002/adma.201803625

10.1038/natrevmats.2016.64

10.1016/j.ijhydene.2019.11.204

10.1088/2053-1591/ab3f01

10.1016/j.jpowsour.2016.02.012

10.1039/C7NH00066A

10.1016/j.jcis.2019.04.004

10.1002/admi.201700005

10.1016/j.jcis.2019.10.062

10.1007/s10853-017-1030-9

10.1016/j.jcis.2017.12.028

10.1002/adfm.201805828

10.1088/2053-1591/3/9/095018

10.1016/j.ijhydene.2016.07.017

10.1021/acsami.7b14399

10.1088/2053-1591/ab11bc

10.1088/2053-1591/ab5504

10.1016/j.ijhydene.2019.11.123

10.1016/j.apcatb.2018.11.083

10.1016/j.cplett.2020.137107

10.1016/j.ijhydene.2013.05.112

10.1021/acsami.6b05245

10.1002/aenm.201602355

10.1016/j.jcis.2015.10.020

10.1016/j.cej.2016.05.147

10.1021/acsami.5b09447

10.1016/j.ensm.2017.11.006

10.1002/admi.201900565

10.1016/j.electacta.2018.04.080

10.1016/j.electacta.2015.07.033

10.1149/2.0351815jes

10.1016/j.ijhydene.2016.08.058

10.1016/j.matdes.2016.07.060

10.20964/2017.05.84

Wan M, 2017, Synthesis and hydrogen evolution performance of molybdenum disulfide nanosheets/carbon nanofibers hybrid materials, Chin J Inorg Chem, 33, 595

10.1246/cl.150844

10.1002/admi.201600825

10.1016/j.electacta.2015.01.197

10.1016/j.jcis.2019.09.102

10.1016/j.ijhydene.2019.05.121

10.1016/j.electacta.2015.03.077

10.1016/j.electacta.2016.10.015

10.1002/ente.201700879

10.1039/C5TA04426J

10.1021/acsaem.8b02105

10.1039/C6QI00101G

10.1021/acssuschemeng.8b05462

10.1016/j.carbon.2016.12.081

10.1016/j.materresbull.2018.12.002

10.1016/j.apsusc.2019.02.059

10.1039/C7TA00828G

10.1039/C6QI00229C

10.1016/j.coco.2018.06.010

10.1016/j.ijhydene.2018.06.102

10.1021/acssuschemeng.9b00402

10.1016/j.apsusc.2019.06.160

10.1007/s10853-017-0964-2

10.1016/j.jcis.2020.02.063

10.1016/j.apsusc.2019.143672

10.1039/C9CC08466E

10.1016/j.matlet.2016.06.060

10.1088/1361-6528/aa5c2f

10.1039/C5TA03704B

10.1088/1361-6528/ab70ff

Zhu H, 2017, The marriage and integration of nanostructures with different dimensions for synergistic electrocatalysis, Energy Environ Sci, 10, 330

10.1002/adma.201501969

10.1002/adma.201707301

10.1002/ppsc.201700189

10.1039/C9NR02197C

10.1016/j.elecom.2015.12.012

Zhang Z, 2018, Durable oxygen evolution reaction of one dimensional spinel CoFe2O4 nanofibers fabricated by electrospinning, RSC Adv, 8, 5343

10.1149/2.0441910jes

10.1039/C9TA09873A

10.1016/j.jcis.2019.02.084

10.1039/C8CY02620C

10.1002/celc.201901584

10.1039/c3nr05835b

10.1002/smll.201704207

10.1039/C8NA00330K

10.1016/j.apsusc.2019.144680

10.1021/acsaem.8b02183

10.1016/j.electacta.2017.06.047

10.1016/j.jssc.2019.07.004

10.1016/j.nanoen.2019.103879

10.1088/1361-6528/aacfd7

10.1021/acs.inorgchem.9b01621

10.1039/C8TA02416B

10.1002/aenm.201800612

10.1039/C4CP00385C

10.1016/j.matlet.2018.11.160

10.1016/j.electacta.2020.135647

10.1016/j.apsusc.2016.12.242

10.1016/S1872-2067(14)60127-3

10.1016/j.apcatb.2018.11.039

10.1039/C9NR10943A

10.1002/adfm.201705094

10.1039/C8QI01320A

10.1021/acsami.7b12247

10.1016/j.electacta.2018.08.118

10.1002/smll.201402679

10.1039/C6RA14770D

Li Z, 2020, Conductive metal‐organic frameworks endow high‐efficient oxygen evolution of La0.6Sr0.4Co0.8Fe0.2O3 perovskite oxide nanofibers, Electrochim Acta, 334

10.1039/C9TA06020K

10.1016/j.nanoen.2014.09.009

10.1016/j.electacta.2018.05.077

10.1016/j.pnsc.2018.03.002

10.1021/acsami.5b06587

10.1016/j.electacta.2019.135033

10.1002/admi.201700146

10.1039/C4NR07243J

10.1002/ente.201800298

10.1039/C9QI01020C

10.1039/C9SE01130G

10.1016/j.apcatb.2019.118437

10.1016/j.carbon.2018.10.064

10.1016/j.jpowsour.2017.08.007

10.1088/1361-6528/ab2af0

10.1002/cphc.201600771

10.1016/j.apsusc.2019.01.218

10.1002/chem.201903616

10.1016/j.electacta.2019.135396

10.1021/acs.nanolett.7b04502

10.1002/advs.201900628

10.1016/j.jallcom.2019.151766

10.1039/C7TA05936A

10.1002/slct.201803351

10.1021/acsami.8b14563

10.1002/cnma.201700071

10.1021/acscatal.7b02153

10.1039/C6TA01712F

10.1002/cctc.201501326

10.1016/j.ijhydene.2019.02.214

10.1016/j.ijhydene.2019.04.073

10.1021/acs.nanolett.6b00185

Li Y, 2018, Scalable fabrication of highly active and durable membrane electrodes toward water oxidation, Small, 14, 170210

10.1021/acssuschemeng.8b06624

10.1002/cssc.201802500

10.1002/advs.201700226

10.1021/acssuschemeng.9b04699

10.1021/acsami.7b01418

10.1007/s10853-017-1410-1

10.1002/aenm.201700666

10.1002/aenm.201602122

10.1016/j.electacta.2019.03.091

10.1002/advs.201902371

10.1021/acsami.9b16390

10.1002/advs.201901833

10.1016/j.apcatb.2018.11.083

10.1039/C6TA04244A

10.1021/acssuschemeng.9b04643

10.1039/C7TA08166A

10.3390/ma13040856

10.1021/acsami.9b19382

10.1002/aenm.201803185