Electronic, elastic, and thermodynamic properties of Cd0.75TM0.25S (TM = Os or Ir) alloys with the TB-mBJ approach and hybrid density functional (HSE06)
Springer Science and Business Media LLC - Trang 1-15 - 2023
Tóm tắt
The electronic structure, elastic moduli, as well as thermodynamic features of the ferromagnetic Cd0.75TM0.25S (TM = Os or Ir) compounds in the zinc-blende phase were investigated by employing the “generalized gradient approximations” parametrized by Wu and Cohen combined with the “modified Becke-Johnson (TB-mBJ)” as well as the hybrid functional (HSE06). The predicted total magnetic moments for the transition metals Os and Ir are 4.0 μB and 3.0 μB with TB-mBJ and are 2.0 μB and 3.0 μB using the hybrid functional (HSE06) for compounds Cd0.75Os0.25S and Cd0.75Ir0.25S, respectively. The generation of magnetic moments and spin-polarization in these alloys is directly linked to the contribution coming from TM-5d states. The ferromagnetic properties of these alloys were predicted by the computed exchange constants Besides, the increase in the porosity paramete
$$N_{0\alpha }$$
and
$$N_{0\beta }$$
. The Total and partial densities of states (TDOS/PDOS) and the behavior of electronic band structures (EBS) were also calculated to describe the ferromagnetic semiconducting and half-metallic (HM) characteristics with TB-mBJ and the hybrid functional (HSE06). According to the findings, Cd0.75Os0.25S is a half-metallic ferromagnetic (HM) material with a full polarization spin distribution of electrons at the Fermi energy level, exhibiting metallicity for the majority spin and a semiconducting nature for the minority spin. In contrast, Cd0.75Ir0.25S is a ferromagnetic half-semiconductor (HSC) with two distinct gaps depending on the up and down spin configurations. Calculations of the elastic constants, Young and shear moduli reveal that the compound Cd0.75TM0.25S (TM = Os or Ir) is mechanically stable, has a high degree of anisotropy, and is naturally ductile. Furthermore, the “quasi-harmonic Debye model” was performed to examine the thermodynamic properties of the studied compounds, including the thermal capacity, entropy and Debye temperature.
Tài liệu tham khảo
T Jungwirth, J Sinova, J Masek, J Kucera and A H MacDonald Mod. Phys. 78 809 (2006)
F Matsukara , H Ohno and T Dietl Handbook of Magnetic Materials, (Elsevier, Amsterdam) K Bushow Vol. 14 1 (2002)
R A de Groot, F M Mueller, P D Van Engen and K H J Buschow Rev. lett. 50 2024 (1983)
C Wei Wu and D Xin Yao J. Magn. Magn. Mater. 4931 165727 (2020)
H Miyagawa et al. J. Magn. Magn. Mater. 47615 213 (2019)
C B S Valentin, R L de Sousa e Silva and A Franco Mater. Sci. Semicond. Process. 96 122 (2019)
S Arif, B Amin, I Ahmad, M Maqbool, R Ahmad, M Haneefand and N Ikram Appl. Phys. 12 184 (2012)
R Kevin, K William and R Daniel Nat. Mater. 5 291 (2006)
S Gupta, W E Fenwick, A Melton, T Zaidi, H Yu and V Rengarajan J Cryst. Growth 310 503 (2008)
Y Li, C Chuanbao and Z Chen Chem. Phys. Lett. 517 55 (2011)
S Sambasivam, B C Choi and J G Lin J. Solid State Chem. 184 199 (2011)
K Bapna, R J Choudhary, S K Pandey, D M Phase, S K Sharma and M Knobel Appl. Phys. Lett. 99 112502 (2011)
H Pan, J B Yi, L Shen, R Q Wu, J H Yang, J Y Lin, Y P Feng, J Ding, L H Van and J H Yin Rev. Lett. 99 127201 (2007)
M Boudjelal, A Belfedal, B Bouadjemi, T Lantri, R Bentata, M Batouche and R Khenata Chin J. Phys. 61 155 (2019)
C W Zhang, S S Yan, P J Wang and Z Zhang Phys. Lett. 46 496 (2010)
V Ladizhansky, V Lyahovitskaya and S Vega Phys. Rev. B 60 8097 (1999)
B Srinivasa Rao, V R Rajagopal, B R Kumar and T Subba Rao Int. J. Nanosci. 11 1240006 (2012)
T Dietl, H Ohno and F Matsukura Phys. Rev. B 63 195205 (2001)
K Sato and H Katayama-Yoshida Semicond. Sci. Technol. 17 367 (2002)
S Nazir, N Ikram, M Tanveer and A Shaukat J. Phys. Chem. 113 6022 (2009)
H Moulkhalwa, Y Zaoui, K O Obodo, A Belkadi, L Beldi and B Bouhafs J. Supercond. Nov. Magn. 32 635 (2019)
M Boudjelal, R Bentata, B Bouadjemi, A Belfedal, T Seddik, T Lantri, M Batouche, S Bentata and R Khenata Indian J. Phys. 12648 02078 (2021)
Ch Bourouis and A Meddour J. Magn. Magn. Mater. 324 1040 (2012)
W Benstaali, S Bentata and H Bentounes Sci. Semicond. Process. 17 53 (2014)
F Aorag and H Cartier Mater. Chem. Phys. 66 10 (2000)
M H Gous, A Meddour and C Bourouis J. Magn. Magn. Mater. 422 271 (2017)
H Yahi and A Meddour J. Magn. Magn. Mater. 432 591 (2017)
S Zhou et al. Phys. Lett. 93 232507 (2008)
S Haid, W Benstaali, A Abbad, B Bouadjemi, S Bentata and Z Aziz Mater. Sci. 245 68 (2019)
"M Boudjelal et al. Opt. Quant. Elec. 54 716 (2022)
P Hohenberg and W Kohn Phys. Rev. 136 864 (1964)
Z Wu and R E Cohen Phys. Rev. B 73 235116 (2006)
F Tran and P Blaha Phys. Rev. Lett. 102 226401 (2009)
J Heyd, G E Scuseria and M Ernzerhof J. Chem. Phys. 118, 8207 (2003); 124, 219906(E) (2006)
O Madelung, Numerical Data and Functional Relation-ships in Science and Technology, Landolt Borenstein, Springer, vol. 22, p. 117, Berlin (1982)
G Z Shen, J H Cho, J K Yoo, G C Yi and C J Lee J. Phys. Chem. B 109 9294 (2005)
N Kh Abrikosov, V B Bankina, L V Poretskaya, L E Shelimova and E V Skudnova, Semiconducting II–VI, IV–VI and V–VI Compounds ~Plenum, New York (1969)
J Heyd J. Chem. Phys. 123 174101 (2005)
M Z Huang and W Y Ching J. Phys. Chem. Solids 46 977 (1985)
H Moulkhalwa, Y Zaoui, K O Obodo and A Belkadi J. Supercond. Nov. Magn. 32 635 (2019)
K L Yao, G Y Gao, Z L Liu and L Zhu Solid State Commun. 133 301 (2005)
J R Christman Fundamentals of Solid-State Physics (New York: Wiley) (1988)
Z Hashin and S Shtrikman J. Mech. Phys. Solids 10 343 (1962)
S A Khandy, I Islam, D C Gupta, R Khenata and A Laref Sci. Rep. 9 1 (2019)
M. Jamal Cubic–Elastic, http: //www .wien2kat/reguser /unsupported /cubic-elast (2012)
L Huang, M C Fehler and C C Burch, Hybrid local Born/Rytov Fourier migration method, in Mathematical Methods in Geophysical Imaging 3453 14 (1998)
I R Shein and A L Ivanovskii J. Phys. Condens. Matter 20 415218 (2008)
K Wright and J D Gale Phys. Rev. B 70 035211 (2004)
U Sarkar, B Debnath, M Debbarma, D Ghosh, S Chanda and R Bhattacharjee Comput. Condens. Matter 22 00448 (2020)
O Madelung, M Schulz, H Weiss and Landolt-Borstein Numerical Data and Functional Relationships in Science and Technology (Berlin: Springer) (1982)
S Khenchoul, A Guibadj, B Lagoun, A Chadli and S Maabed J. Supercond. Nov. Magn. 29 2225 (2016)
B B Karki, G J Ackl and J Crain J. Phys. Condens. Matter. 9 8579 (1997)
S Pugh and D Philos Mag. J. Sci. 45 823 (1954)
M Dao, N Chollacoop, K J van Vliet, T A Venkatesh and S Suresh Acta Mater. 49 3899 (2001)
N Frantsevich, F F Voronov and S A Bokuta Handbook (Kiev: Naukuva Dumka) I N Frantsevich 60 (1983)
J F Nye Physical properties of crystals (Oxford: Oxford University Press) (1985)
R F S Hearmon and A A Maradudin Phys. Today 14 48 (1961)
M A Hadi, M Roknuzzaman, A Chroneos, S H Naqib, A Islam, V Volk and K Ostrikov Comput. Mater. Sci. 137 318 (2017)
M I Naher and S H Naqib J. Alloys Compd. 829 154509 (2020)
P K Sainia , D SAhlawat , S Daoud and D Singh. Indian J. Pure Appl. Phys. 57793 (2019)
N Kh Abrikosov, V F Bankina, LV Poretskaya, LE Shelimova and E V Skudnova, Plenum, New York. 27 (1969)
MA Nusimovici and LJ Birman Proc 7th Int Conf II-VI Semiconducting Compounds, (W A Benjamin Inc: Providence R I USA New York) 1204 (1967)
M G Holland Phys. Rev. A. 134 471 (1964)
R J Goble and S D Scott Can Mineral. 23 273 (1985)
R C Sharma and Y A Chang J. Phase Equilibria. 17 425 (1996)
A A Maradudin, EW Montroll, GH Weiss and IP Patova (Academic Press, New York) (1971)
R Majumder, M M Hossain and D Shen Mod. Phys. Lett. B 33 1950378 (2019)
R Yang, C Zhu, Q Wei and D Zhang Solid State Commun. 267 23 (2017)
H J Monkhorst and J D Pack Phys. Rev. B 13 5188 (1976)
F Peng, H Fu and X Yang Phys. B Condens. Matter. 403 2851 (2008)
S A Khandy and J D Chai J. Appl. Phys. 127 165102 (2020)
M Florez, J Recio, E Francisco, M Blanco and A M Penda’s Phys. Rev. B 66 144112 (2002)
E Francisco, M Blanco and G Sanjurjo Phys. Rev. B 63 094107 (2001)
S A Khandy and J-D Chai J. Magn. Magn. Mater. 487 165289 (2019)
R Hill Proc. Phys. Soc. Lond. A 65 349 (1952)
A T Petit and P L Dulong Ann. Chim. Phys. 10 395 (1819)