Electronic and optical properties of CsGeX2M (X ,M = Br, Cl, I) perovskites for solar cell applications: First-principles study using PBE and TB-mBJ potentials

Materials Science in Semiconductor Processing - Tập 143 - Trang 106488 - 2022
F. Elfatouaki1, O. Farkad1, E.A. Ibnouelghazi1, D. Abouelaoualim1, A. Outzourhit1
1LaMEE, Department of Physics, Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco

Tài liệu tham khảo

Ribeyron, 2017, Crystalline silicon solar cells: better than ever, Nat. Energy, 2, 1, 10.1038/nenergy.2017.67 Mathews, 2019, Technology and market perspective for indoor photovoltaic cells, Joule, 3, 1415, 10.1016/j.joule.2019.03.026 Ibn-Mohammed, 2017, Perovskite solar cells: an integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies, Renew. Sustain. Energy Rev., 80, 1321, 10.1016/j.rser.2017.05.095 Kojima, 2009, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r Cai, 2021, Multifunctional enhancement for highly stable and efficient perovskite solar cells, Adv. Funct. Mater., 31, 10.1002/adfm.202005776 Zhang, 2020, Critical review of recent progress of flexible perovskite solar cells, Mater. Today, 10.1016/j.mattod.2020.05.002 Yue, 2019, Synthesis, characterization, and stability studies of Ge-based perovskites of controllable mixed cation composition, produced with an ambient surfactant-free approach, ACS Omega, 4, 18219, 10.1021/acsomega.9b02203 Sun, 2021, Architecture of pin sn-based perovskite solar cells: characteristics, advances, and perspectives, ACS Energy Lett., 6, 2863, 10.1021/acsenergylett.1c01170 Li, 2021, Efficient passivation strategy on sn related defects for high performance all-inorganic CsSnI3 perovskite solar cells, Adv. Funct. Mater., 31, 10.1002/adfm.202007447 Shao, 2018, Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency, Adv. Energy Mater., 8, 10.1002/aenm.201702019 Yokoyama, 2020, Improving the open-circuit voltage of Sn-based perovskite solar cells by band alignment at the electron transport layer/perovskite layer interface, ACS Appl. Mater. Interfaces, 12, 27131, 10.1021/acsami.0c04676 Wang, 2020, Reducing agents for improving the stability of Sn-based perovskite solar cells, Chem.–Asian J., 15, 1524, 10.1002/asia.202000160 Liu, 2021, First-principles study of thermodynamic miscibility, structures, and optical properties of Cs2Sn(X1−xYx)6(X,Y=I,Br,Cl)lead-free perovskite solar cells, Appl. Phys. Lett., 118, 10.1063/5.0043809 Krishnamoorthy, 2015, Lead-free germanium iodide perovskite materials for photovoltaic applications, J. Mater. Chem. A, 3, 23829, 10.1039/C5TA05741H Pecunia, 2020, Lead-free halide perovskite photovoltaics: challenges, open questions, and opportunities, APL Mater., 8, 10.1063/5.0022271 Moschou, 2018, Electronic properties of Cs-based halide perovskites: an ab initio study, Phys. Status Solidi (A), 215 Wang, 2016, Stability of perovskite solar cells, Sol. Energy Mater. Sol. Cells, 147, 255, 10.1016/j.solmat.2015.12.025 Lin, 2007, Infrared properties of CsGe(BrxCl1−x)3, nonlinear optical rhombohedral semiconductor, J. Phys.: Condens. Matter, 19 Tang, 2009, First principles calculations of linear and second-order optical responses in rhombohedrally distorted perovskite ternary halides, CsGeX3(X=Cl,Br,andI), Japan. J. Appl. Phys., 48 Petersen, 2000, Improving the efficiency of FP−LAPW calculations, Comput. Phys. Comm., 126, 294, 10.1016/S0010-4655(99)00495-6 Schwarz, 2003, Solid state calculations using WIEN2k, Comput. Mater. Sci., 28, 259, 10.1016/S0927-0256(03)00112-5 Mokrousov, 2006 Kheifets, 1999, Full-potential linear-muffin-tin-orbital calculation of electron momentum densities of solids, J. Phys.: Condens. Matter, 11, 6779 Savrasov, 1992, Full-potential linear-muffin-tin-orbital method for calculating total energies and forces, Phys. Rev. B, 46, 12181, 10.1103/PhysRevB.46.12181 Schwarz, 2002, Electronic structure calculations of solids using the wien2k package for material sciences, Comput. Phys. Comm., 147, 71, 10.1016/S0010-4655(02)00206-0 Blaha, 2001, Wien2k Koller, 2011, Merits and limits of the modified becke-johnson exchange potential, Phys. Rev. B, 83, 10.1103/PhysRevB.83.195134 Camargo-Martínez, 2012, Performance of the modified becke-johnson potential for semiconductors, Phys. Rev. B, 86, 10.1103/PhysRevB.86.195106 Kumar, 1995, High pressure equation of state for solids, Physica B, 212, 391, 10.1016/0921-4526(95)00361-C Travis, 2016, On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system, Chem. Sci., 7, 4548, 10.1039/C5SC04845A Tidrow, 2014, Mapping comparison of goldschmidt’s tolerance factor with perovskite structural conditions, Ferroelectrics, 470, 13, 10.1080/00150193.2014.922372 Hubbard, 1967, The approximate calculation of electronic band structure, Proc. Phys. Soc. (1958-1967), 92, 921, 10.1088/0370-1328/92/4/313 Gygi, 2005, Ab initio simulation in extreme conditions, Mater. Today, 8, 26, 10.1016/S1369-7021(05)71157-3 Cao, 2015, 2D homologous perovskites as light-absorbing materials for solar cell applications, J. Am. Chem. Soc., 137, 7843, 10.1021/jacs.5b03796 Lu, 2019, Rapid discovery of ferroelectric photovoltaic perovskites and material descriptors via machine learning, Small Methods, 3, 10.1002/smtd.201900360 Sun, 2016, Mixed Ge/Pb perovskite light absorbers with an ascendant efficiency explored from theoretical view, Phys. Chem. Chem. Phys., 18, 14408, 10.1039/C6CP02105K Robinson, 1997, Reinterpretation of the lengths of bonds to fluorine in terms of an almost ionic model, Inorg. Chem., 36, 3022, 10.1021/ic961315b Padmavathy, 2019, Electronic and optical properties of cubic perovskites CsPbCl3−yIy(y=0,1,2,3), Z. Naturforschung A, 74, 905, 10.1515/zna-2018-0516 Shekhawat, 2021, Structural transformation and phase change properties of se substituted GeTe, Sci. Rep., 11, 1, 10.1038/s41598-021-87206-x Roknuzzaman, 2016, Physical properties of predicted ti2cdn versus existing ti2cdc max phase: An ab initio study, Comput. Mater. Sci., 113, 148, 10.1016/j.commatsci.2015.11.039 Thahirunnisa, 2018, Optical properties of novel ASiP2(A=Ca,Sr) chalcopyrites: first-principle study, Appl. Phys. A, 124, 1, 10.1007/s00339-018-2211-3 Chen, 2012, Studies of the structural, electronic and dielectric properties of Ca1−xSrxTiO3, Physica B, 407, 3705, 10.1016/j.physb.2012.05.025 Djurišić, 2001, The optical dielectric function: excitonic effects at e0 critical point, J. Phys. Soc. Japan, 70, 2164, 10.1143/JPSJ.70.2164 Roknuzzaman, 2018, Insight into lead-free organic-inorganic hybrid perovskites for photovoltaics and optoelectronics: a first-principles study, Org. Electron., 59, 99, 10.1016/j.orgel.2018.04.051 Godefroy, 1972, Noise measurements in ferroelectrics, J. Phys. Colloq., 33, C2, 10.1051/jphyscol:1972210 Ammerlaan, 2015 Hu, 2017, All-dielectric metasurface circular dichroism waveplate, Sci. Rep., 7, 1