Electronic and optical properties of CsGeX2 M (X ,M = Br, Cl, I) perovskites for solar cell applications: First-principles study using PBE and TB-mBJ potentials
Tài liệu tham khảo
Ribeyron, 2017, Crystalline silicon solar cells: better than ever, Nat. Energy, 2, 1, 10.1038/nenergy.2017.67
Mathews, 2019, Technology and market perspective for indoor photovoltaic cells, Joule, 3, 1415, 10.1016/j.joule.2019.03.026
Ibn-Mohammed, 2017, Perovskite solar cells: an integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies, Renew. Sustain. Energy Rev., 80, 1321, 10.1016/j.rser.2017.05.095
Kojima, 2009, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r
Cai, 2021, Multifunctional enhancement for highly stable and efficient perovskite solar cells, Adv. Funct. Mater., 31, 10.1002/adfm.202005776
Zhang, 2020, Critical review of recent progress of flexible perovskite solar cells, Mater. Today, 10.1016/j.mattod.2020.05.002
Yue, 2019, Synthesis, characterization, and stability studies of Ge-based perovskites of controllable mixed cation composition, produced with an ambient surfactant-free approach, ACS Omega, 4, 18219, 10.1021/acsomega.9b02203
Sun, 2021, Architecture of pin sn-based perovskite solar cells: characteristics, advances, and perspectives, ACS Energy Lett., 6, 2863, 10.1021/acsenergylett.1c01170
Li, 2021, Efficient passivation strategy on sn related defects for high performance all-inorganic CsSnI3 perovskite solar cells, Adv. Funct. Mater., 31, 10.1002/adfm.202007447
Shao, 2018, Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency, Adv. Energy Mater., 8, 10.1002/aenm.201702019
Yokoyama, 2020, Improving the open-circuit voltage of Sn-based perovskite solar cells by band alignment at the electron transport layer/perovskite layer interface, ACS Appl. Mater. Interfaces, 12, 27131, 10.1021/acsami.0c04676
Wang, 2020, Reducing agents for improving the stability of Sn-based perovskite solar cells, Chem.–Asian J., 15, 1524, 10.1002/asia.202000160
Liu, 2021, First-principles study of thermodynamic miscibility, structures, and optical properties of Cs2Sn(X1−xYx)6(X,Y=I,Br,Cl)lead-free perovskite solar cells, Appl. Phys. Lett., 118, 10.1063/5.0043809
Krishnamoorthy, 2015, Lead-free germanium iodide perovskite materials for photovoltaic applications, J. Mater. Chem. A, 3, 23829, 10.1039/C5TA05741H
Pecunia, 2020, Lead-free halide perovskite photovoltaics: challenges, open questions, and opportunities, APL Mater., 8, 10.1063/5.0022271
Moschou, 2018, Electronic properties of Cs-based halide perovskites: an ab initio study, Phys. Status Solidi (A), 215
Wang, 2016, Stability of perovskite solar cells, Sol. Energy Mater. Sol. Cells, 147, 255, 10.1016/j.solmat.2015.12.025
Lin, 2007, Infrared properties of CsGe(BrxCl1−x)3, nonlinear optical rhombohedral semiconductor, J. Phys.: Condens. Matter, 19
Tang, 2009, First principles calculations of linear and second-order optical responses in rhombohedrally distorted perovskite ternary halides, CsGeX3(X=Cl,Br,andI), Japan. J. Appl. Phys., 48
Petersen, 2000, Improving the efficiency of FP−LAPW calculations, Comput. Phys. Comm., 126, 294, 10.1016/S0010-4655(99)00495-6
Schwarz, 2003, Solid state calculations using WIEN2k, Comput. Mater. Sci., 28, 259, 10.1016/S0927-0256(03)00112-5
Mokrousov, 2006
Kheifets, 1999, Full-potential linear-muffin-tin-orbital calculation of electron momentum densities of solids, J. Phys.: Condens. Matter, 11, 6779
Savrasov, 1992, Full-potential linear-muffin-tin-orbital method for calculating total energies and forces, Phys. Rev. B, 46, 12181, 10.1103/PhysRevB.46.12181
Schwarz, 2002, Electronic structure calculations of solids using the wien2k package for material sciences, Comput. Phys. Comm., 147, 71, 10.1016/S0010-4655(02)00206-0
Blaha, 2001, Wien2k
Koller, 2011, Merits and limits of the modified becke-johnson exchange potential, Phys. Rev. B, 83, 10.1103/PhysRevB.83.195134
Camargo-Martínez, 2012, Performance of the modified becke-johnson potential for semiconductors, Phys. Rev. B, 86, 10.1103/PhysRevB.86.195106
Kumar, 1995, High pressure equation of state for solids, Physica B, 212, 391, 10.1016/0921-4526(95)00361-C
Travis, 2016, On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system, Chem. Sci., 7, 4548, 10.1039/C5SC04845A
Tidrow, 2014, Mapping comparison of goldschmidt’s tolerance factor with perovskite structural conditions, Ferroelectrics, 470, 13, 10.1080/00150193.2014.922372
Hubbard, 1967, The approximate calculation of electronic band structure, Proc. Phys. Soc. (1958-1967), 92, 921, 10.1088/0370-1328/92/4/313
Gygi, 2005, Ab initio simulation in extreme conditions, Mater. Today, 8, 26, 10.1016/S1369-7021(05)71157-3
Cao, 2015, 2D homologous perovskites as light-absorbing materials for solar cell applications, J. Am. Chem. Soc., 137, 7843, 10.1021/jacs.5b03796
Lu, 2019, Rapid discovery of ferroelectric photovoltaic perovskites and material descriptors via machine learning, Small Methods, 3, 10.1002/smtd.201900360
Sun, 2016, Mixed Ge/Pb perovskite light absorbers with an ascendant efficiency explored from theoretical view, Phys. Chem. Chem. Phys., 18, 14408, 10.1039/C6CP02105K
Robinson, 1997, Reinterpretation of the lengths of bonds to fluorine in terms of an almost ionic model, Inorg. Chem., 36, 3022, 10.1021/ic961315b
Padmavathy, 2019, Electronic and optical properties of cubic perovskites CsPbCl3−yIy(y=0,1,2,3), Z. Naturforschung A, 74, 905, 10.1515/zna-2018-0516
Shekhawat, 2021, Structural transformation and phase change properties of se substituted GeTe, Sci. Rep., 11, 1, 10.1038/s41598-021-87206-x
Roknuzzaman, 2016, Physical properties of predicted ti2cdn versus existing ti2cdc max phase: An ab initio study, Comput. Mater. Sci., 113, 148, 10.1016/j.commatsci.2015.11.039
Thahirunnisa, 2018, Optical properties of novel ASiP2(A=Ca,Sr) chalcopyrites: first-principle study, Appl. Phys. A, 124, 1, 10.1007/s00339-018-2211-3
Chen, 2012, Studies of the structural, electronic and dielectric properties of Ca1−xSrxTiO3, Physica B, 407, 3705, 10.1016/j.physb.2012.05.025
Djurišić, 2001, The optical dielectric function: excitonic effects at e0 critical point, J. Phys. Soc. Japan, 70, 2164, 10.1143/JPSJ.70.2164
Roknuzzaman, 2018, Insight into lead-free organic-inorganic hybrid perovskites for photovoltaics and optoelectronics: a first-principles study, Org. Electron., 59, 99, 10.1016/j.orgel.2018.04.051
Godefroy, 1972, Noise measurements in ferroelectrics, J. Phys. Colloq., 33, C2, 10.1051/jphyscol:1972210
Ammerlaan, 2015
Hu, 2017, All-dielectric metasurface circular dichroism waveplate, Sci. Rep., 7, 1