Electron enriched ternary NiMoB electrocatalyst for improved overall water splitting: Better performance as compared to the Pt/C || RuO2 at high current density

Applied Materials Today - Tập 29 - Trang 101579 - 2022
Rutuja Mandavkar1, Md Ahasan Habib1, Shusen Lin1, Rakesh Kulkarni1, Shalmali Burse1, Jae-Hun Jeong1, Jihoon Lee1
1Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul 01897, South Korea

Tài liệu tham khảo

Yoon, 2021, Nat. Commun., 12, 4309, 10.1038/s41467-021-24428-7 Zhao, 2021, Nat. Energy, 6, 388, 10.1038/s41560-021-00795-9 Li, 2011, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b Lin, 2021, J. Power Sources, 514, 10.1016/j.jpowsour.2021.230600 Liu, 2021, J. Power Sources, 506 Wang, 2021, J. Power Sources, 513 Yan, 2021, J. Energy Chem., 58, 446, 10.1016/j.jechem.2020.10.010 Wang, 2020, Nano Energy, 77 Xu, 2021, J. Mater. Chem. A, 9, 24677, 10.1039/D1TA06603J Chen, 2020, Nanoscale, 12, 7116, 10.1039/D0NR00446D Yu, 2018, Nat. Commun., 9, 1, 10.1038/s41467-017-02088-w Wang, 2021, Adv. Funct. Mater., 31, 1 Suryanto, 2019, Nat. Commun., 10, 1, 10.1038/s41467-019-13415-8 Li, 2017, Adv. Energy Mater., 7, 1 Liang, 2016, Nanotechnology, 27, 12LT01, 10.1088/0957-4484/27/12/12LT01 Lian, 2019, Chem. Sci., 10, 464, 10.1039/C8SC03877E Yang, 2017, J. Power Sources, 349, 68, 10.1016/j.jpowsour.2017.03.028 Jokar, 2021, Electrochim. Acta, 389, 10.1016/j.electacta.2021.138691 Habib, 2022, Design of boron-based ternary W3CoB3 electrocatalyst for the improved HER and OER performances, Mater. Today Energy, 26 Gupta, 2015, J. Power Sources, 279, 620, 10.1016/j.jpowsour.2015.01.009 Zhang, 2016, Nano Energy, 19, 98, 10.1016/j.nanoen.2015.11.020 Jiang, 2018, Small Methods, 2 Chen, 2020, Inorg. Chem. Front., 7, 2248, 10.1039/D0QI00146E Shi, 2021, Nanoscale, 13, 2849, 10.1039/D0NR06857H Jiang, 2020, Nanoscale, 12, 9327, 10.1039/D0NR01279C Reid, 2001, Jpn. J. Appl. Phys., 40, 2650, 10.1143/JJAP.40.2650 Kim, 2015, J. Electrochem. Soc., 162, D354, 10.1149/2.0561508jes Chou, 2015, Thin Solid Films, 584, 98, 10.1016/j.tsf.2014.12.016 Péter, 2021, Electrochim. Acta, 382, 10.1016/j.electacta.2021.138352 Zhang, 2019, J. Mater. Chem. A, 7, 5195, 10.1039/C8TA12269E Chunduri, 2019, Appl. Catal. B Environ., 259, 10.1016/j.apcatb.2019.118051 Lasia, 2019, Int. J. Hydrog. Energy, 44, 19484, 10.1016/j.ijhydene.2019.05.183 Jiang, 2021, Electrochim. Acta, 386, 10.1016/j.electacta.2021.138459 Wang, 2018, J. Mater. Chem. A, 6, 8479, 10.1039/C8TA00517F Ni, 2007, Renew. Sustain. Energy Rev., 11, 401, 10.1016/j.rser.2005.01.009 Li, 2017, J. Alloy. Compd., 702, 38, 10.1016/j.jallcom.2017.01.239 Lai, 2012, Appl. Surf. Sci., 261, 510, 10.1016/j.apsusc.2012.08.046 Chen, 2020, Nanoscale Adv., 2, 3263, 10.1039/D0NA00353K Laszczyńska, 2018, Appl. Surf. Sci., 462, 432, 10.1016/j.apsusc.2018.08.160 Zeng, 2018, J. Mater. Chem. A, 6, 15942, 10.1039/C8TA05677C Yang, 2021, Adv. Funct. Mater., 31 Kim, 2022, ACS Nano, 16(1), 1625, 10.1021/acsnano.1c10504 Anantharaj, 2021, ACS Energy Lett., 6, 1607, 10.1021/acsenergylett.1c00608 Chauvin, 2014, J. Electrochem. Soc., 161, F318, 10.1149/2.077403jes Sun, 2022, Achieving highly efficient pH-universal hydrogen evolution by superhydrophilic amorphous/crystalline Rh(OH) 3/NiTe coaxial nanorod array electrode, Appl. Catal. B Environ., 305, 10.1016/j.apcatb.2022.121088 Anantharaj, 2020, Adv. Energy Mater., 10, 10.1002/aenm.201902666 Hou, 2022, Strategies for Electrochemically Sustainable H2 Production in Acid, Adv. Sci., 9, 10.1002/advs.202104916 Dresp, 2019, ACS Energy Lett., 4, 933, 10.1021/acsenergylett.9b00220 Kim, 2011, Distribution of heavy metals in the surface sediments of the Han River and its estuary, Korea, J. Coast. Res., SI 64, 903 Liu, 2022, Adv. Funct. Mater., 32 Hao, 2020, Energy Environ. Sci., 13, 102, 10.1039/C9EE00839J Hao, 2018, Adv. Energy Mater., 8, 10.1002/aenm.201801372 Cao, 2020, Angew. Chem. Int. Ed., 59, 4154, 10.1002/anie.201915254 Tiwari, 2020, Nat. Sustain., 3, 556, 10.1038/s41893-020-0509-6 Tiwari, 2019, Adv. Energy Mater., 9, 10.1002/aenm.201970101 Ali, 2021, ChemElectroChem, 8, 1612, 10.1002/celc.202100217 Stern, 2015, Energy Environ. Sci., 8, 2347, 10.1039/C5EE01155H Thangavel, 2020, Energy Environ. Sci., 13, 3447, 10.1039/D0EE00877J Lu, 2017, Small, 13 Xu, 2017, J. Mater. Chem. A, 5, 12379, 10.1039/C7TA02644G Fang, 2018, J. Catal., 357, 238, 10.1016/j.jcat.2017.11.017 Liu, 2017, Adv. Mater., 29 Wang, 2016, Nano Energy, 22, 111, 10.1016/j.nanoen.2016.02.023 Sun, 2018, J. Mater. Chem. A, 6, 22062, 10.1039/C8TA02999G Zhang, 2017, Nat. Commun., 8, 1, 10.1038/s41467-016-0009-6 Jin, 2020, Adv. Funct. Mater., 30 Harzandi, 2020, Appl. Catal. B Environ., 270, 10.1016/j.apcatb.2020.118896 Dang, 2021, J. Mater. Chem. A, 9, 16898, 10.1039/D1TA02597J Tian, 2014, J. Am. Chem. Soc., 136, 7587, 10.1021/ja503372r Jiang, 2014, Angew. Chem., 126, 13069, 10.1002/ange.201406848 Tiwari, 2018, Nat. Energy, 3, 773, 10.1038/s41560-018-0209-x Guan, 2017, Adv. Energy Mater., 7, 10.1002/aenm.201602391 Chen, 2013, ACS Nano, 7, 10190, 10.1021/nn404444r Zou, 2013, Chem. Commun., 49, 7522, 10.1039/c3cc42891e Liu, 2014, J. Am. Chem. Soc., 136, 15670, 10.1021/ja5085157 He, 2017, Angew. Chem. Int. Ed., 56, 3897, 10.1002/anie.201612635 Yan, 2019, Adv. Mater., 31 Thangavel, 2021, J. Mater. Chem. A, 9, 14043, 10.1039/D1TA02883A Harzandi, 2021, Adv. Energy Mater., 11, 10.1002/aenm.202003448