Electron enriched ternary NiMoB electrocatalyst for improved overall water splitting: Better performance as compared to the Pt/C || RuO2 at high current density
Tài liệu tham khảo
Yoon, 2021, Nat. Commun., 12, 4309, 10.1038/s41467-021-24428-7
Zhao, 2021, Nat. Energy, 6, 388, 10.1038/s41560-021-00795-9
Li, 2011, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b
Lin, 2021, J. Power Sources, 514, 10.1016/j.jpowsour.2021.230600
Liu, 2021, J. Power Sources, 506
Wang, 2021, J. Power Sources, 513
Yan, 2021, J. Energy Chem., 58, 446, 10.1016/j.jechem.2020.10.010
Wang, 2020, Nano Energy, 77
Xu, 2021, J. Mater. Chem. A, 9, 24677, 10.1039/D1TA06603J
Chen, 2020, Nanoscale, 12, 7116, 10.1039/D0NR00446D
Yu, 2018, Nat. Commun., 9, 1, 10.1038/s41467-017-02088-w
Wang, 2021, Adv. Funct. Mater., 31, 1
Suryanto, 2019, Nat. Commun., 10, 1, 10.1038/s41467-019-13415-8
Li, 2017, Adv. Energy Mater., 7, 1
Liang, 2016, Nanotechnology, 27, 12LT01, 10.1088/0957-4484/27/12/12LT01
Lian, 2019, Chem. Sci., 10, 464, 10.1039/C8SC03877E
Yang, 2017, J. Power Sources, 349, 68, 10.1016/j.jpowsour.2017.03.028
Jokar, 2021, Electrochim. Acta, 389, 10.1016/j.electacta.2021.138691
Habib, 2022, Design of boron-based ternary W3CoB3 electrocatalyst for the improved HER and OER performances, Mater. Today Energy, 26
Gupta, 2015, J. Power Sources, 279, 620, 10.1016/j.jpowsour.2015.01.009
Zhang, 2016, Nano Energy, 19, 98, 10.1016/j.nanoen.2015.11.020
Jiang, 2018, Small Methods, 2
Chen, 2020, Inorg. Chem. Front., 7, 2248, 10.1039/D0QI00146E
Shi, 2021, Nanoscale, 13, 2849, 10.1039/D0NR06857H
Jiang, 2020, Nanoscale, 12, 9327, 10.1039/D0NR01279C
Reid, 2001, Jpn. J. Appl. Phys., 40, 2650, 10.1143/JJAP.40.2650
Kim, 2015, J. Electrochem. Soc., 162, D354, 10.1149/2.0561508jes
Chou, 2015, Thin Solid Films, 584, 98, 10.1016/j.tsf.2014.12.016
Péter, 2021, Electrochim. Acta, 382, 10.1016/j.electacta.2021.138352
Zhang, 2019, J. Mater. Chem. A, 7, 5195, 10.1039/C8TA12269E
Chunduri, 2019, Appl. Catal. B Environ., 259, 10.1016/j.apcatb.2019.118051
Lasia, 2019, Int. J. Hydrog. Energy, 44, 19484, 10.1016/j.ijhydene.2019.05.183
Jiang, 2021, Electrochim. Acta, 386, 10.1016/j.electacta.2021.138459
Wang, 2018, J. Mater. Chem. A, 6, 8479, 10.1039/C8TA00517F
Ni, 2007, Renew. Sustain. Energy Rev., 11, 401, 10.1016/j.rser.2005.01.009
Li, 2017, J. Alloy. Compd., 702, 38, 10.1016/j.jallcom.2017.01.239
Lai, 2012, Appl. Surf. Sci., 261, 510, 10.1016/j.apsusc.2012.08.046
Chen, 2020, Nanoscale Adv., 2, 3263, 10.1039/D0NA00353K
Laszczyńska, 2018, Appl. Surf. Sci., 462, 432, 10.1016/j.apsusc.2018.08.160
Zeng, 2018, J. Mater. Chem. A, 6, 15942, 10.1039/C8TA05677C
Yang, 2021, Adv. Funct. Mater., 31
Kim, 2022, ACS Nano, 16(1), 1625, 10.1021/acsnano.1c10504
Anantharaj, 2021, ACS Energy Lett., 6, 1607, 10.1021/acsenergylett.1c00608
Chauvin, 2014, J. Electrochem. Soc., 161, F318, 10.1149/2.077403jes
Sun, 2022, Achieving highly efficient pH-universal hydrogen evolution by superhydrophilic amorphous/crystalline Rh(OH) 3/NiTe coaxial nanorod array electrode, Appl. Catal. B Environ., 305, 10.1016/j.apcatb.2022.121088
Anantharaj, 2020, Adv. Energy Mater., 10, 10.1002/aenm.201902666
Hou, 2022, Strategies for Electrochemically Sustainable H2 Production in Acid, Adv. Sci., 9, 10.1002/advs.202104916
Dresp, 2019, ACS Energy Lett., 4, 933, 10.1021/acsenergylett.9b00220
Kim, 2011, Distribution of heavy metals in the surface sediments of the Han River and its estuary, Korea, J. Coast. Res., SI 64, 903
Liu, 2022, Adv. Funct. Mater., 32
Hao, 2020, Energy Environ. Sci., 13, 102, 10.1039/C9EE00839J
Hao, 2018, Adv. Energy Mater., 8, 10.1002/aenm.201801372
Cao, 2020, Angew. Chem. Int. Ed., 59, 4154, 10.1002/anie.201915254
Tiwari, 2020, Nat. Sustain., 3, 556, 10.1038/s41893-020-0509-6
Tiwari, 2019, Adv. Energy Mater., 9, 10.1002/aenm.201970101
Ali, 2021, ChemElectroChem, 8, 1612, 10.1002/celc.202100217
Stern, 2015, Energy Environ. Sci., 8, 2347, 10.1039/C5EE01155H
Thangavel, 2020, Energy Environ. Sci., 13, 3447, 10.1039/D0EE00877J
Lu, 2017, Small, 13
Xu, 2017, J. Mater. Chem. A, 5, 12379, 10.1039/C7TA02644G
Fang, 2018, J. Catal., 357, 238, 10.1016/j.jcat.2017.11.017
Liu, 2017, Adv. Mater., 29
Wang, 2016, Nano Energy, 22, 111, 10.1016/j.nanoen.2016.02.023
Sun, 2018, J. Mater. Chem. A, 6, 22062, 10.1039/C8TA02999G
Zhang, 2017, Nat. Commun., 8, 1, 10.1038/s41467-016-0009-6
Jin, 2020, Adv. Funct. Mater., 30
Harzandi, 2020, Appl. Catal. B Environ., 270, 10.1016/j.apcatb.2020.118896
Dang, 2021, J. Mater. Chem. A, 9, 16898, 10.1039/D1TA02597J
Tian, 2014, J. Am. Chem. Soc., 136, 7587, 10.1021/ja503372r
Jiang, 2014, Angew. Chem., 126, 13069, 10.1002/ange.201406848
Tiwari, 2018, Nat. Energy, 3, 773, 10.1038/s41560-018-0209-x
Guan, 2017, Adv. Energy Mater., 7, 10.1002/aenm.201602391
Chen, 2013, ACS Nano, 7, 10190, 10.1021/nn404444r
Zou, 2013, Chem. Commun., 49, 7522, 10.1039/c3cc42891e
Liu, 2014, J. Am. Chem. Soc., 136, 15670, 10.1021/ja5085157
He, 2017, Angew. Chem. Int. Ed., 56, 3897, 10.1002/anie.201612635
Yan, 2019, Adv. Mater., 31
Thangavel, 2021, J. Mater. Chem. A, 9, 14043, 10.1039/D1TA02883A
Harzandi, 2021, Adv. Energy Mater., 11, 10.1002/aenm.202003448