Electron beam melting of Ti–48Al–2Cr–2Nb alloy: Microstructure and mechanical properties investigation

Intermetallics - Tập 19 Số 6 - Trang 776-781 - 2011
Sara Biamino1, Andrea Penna1, U. Ackelid2, S. Sabbadini3, O. Tassa4, Paolo Fino1, Matteo Pavese1, P. Gennaro5, Claudio Francesco Badini1
1Dipartimento di Scienza dei Materiali ed Ingegneria Chimica Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy#TAB#
2Arcam AB, Krokslätts Fabriker 27A, SE-431 37 Mölndal, Sweden
3Avio SpA, Via I Maggio 56, Rivalta, 10040 Torino, Italy
4Centro Sviluppo Materiali S.p.A., Via di Castel Romano 100, 00128 Roma, Italy
5AevioProp, Via Nibbia 4, S. Pietro Mosezzo, 28060 Novara, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Available from: www.wohlersassociates.com.

Available from: www.arcam.com.

Hiemenz, 2007, Electron beam melting, Advanced Materials & Processes, 165, 45

Harrysson, 2005, Evaluation of titanium implant components directly fabricated through electron beam melting technology, Advanced Materials & Processes, 163/7, 72

Heinl, 2008, Cellular Ti6Al4V structures with interconnected macroporosity for bone implants fabricated by selective electron beam melting, Acta Biomateralia, 4, 1536, 10.1016/j.actbio.2008.03.013

Parthasarathy, 2010, Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM), Journal of the Mechanical Behavior of Biomedical Materials, 3, 249, 10.1016/j.jmbbm.2009.10.006

Li, 2009, Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process, Materials Letters, 63, 403, 10.1016/j.matlet.2008.10.065

Murr, 2010, Characterization of Ti–6Al–4V open cellular foams fabricated by additive manufacturing using electron beam melting, Materials Science and Engineering A, 527, 1861, 10.1016/j.msea.2009.11.015

Murr, 2009, Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications, Journal of the Mechanical Behavior of Biomedical Materials, 2, 20, 10.1016/j.jmbbm.2008.05.004

Kothari, 2007, Microstructure and mechanical properties of consolidated gamma titanium aluminides, Powder Metallurgy, 50/1, 21, 10.1179/174329007X186471

Loria, 2001, Quo vadis gamma titanium aluminide, Intermetallics, 9, 997, 10.1016/S0966-9795(01)00064-4

Hu, 2005, Advances in optimisation of mechanical properties in cast TiAl alloys, Intermetallics, 13, 914, 10.1016/j.intermet.2004.12.002

Loretto, 2000, Microstructural studies on some ordered Ti-based alloys, Intermetallics, 8, 1243, 10.1016/S0966-9795(00)00035-2

Appel, 2000, Novel design concepts for gamma-base titanium aluminide alloys, Intermetallics, 8, 1283, 10.1016/S0966-9795(00)00036-4

Hu, 2001, Effect of composition on grain refinement in TiAl-based alloys, Intermetallics, 9, 1037, 10.1016/S0966-9795(01)00079-6

Wu, 2006, Review of alloy and process development of TiAl alloys, Intermetallics, 14, 1114, 10.1016/j.intermet.2005.10.019

Kim, 1991, Progress in the understanding of gamma titanium aluminides, Journal of the Minerals Metals & Materials Society, 43, 40, 10.1007/BF03221103

Srivastava, 1999, Microstructural studies on direct laser fabricated TiAl, 265

Tönnes, 1993, Influence of microstructure on the tensile and creep properties of titanium aluminides processed by powder metallurgy, 241

Appel, 1998, Microstructure and deformation of two-phase γ titanium aluminides, Materials Science and Engineering R, 22, 187, 10.1016/S0927-796X(97)00018-1

Kim, 1992, Microstructural evolution and mechanical properties of forged gamma titanium aluminide alloy, Acta Metallurgica et Materialia, 40, 1121, 10.1016/0956-7151(92)90411-7

Draper, 2003, Microstructure and mechanical properties of extruded Gamma Met PX, 207

Hamzah, 2005, Microstructural characterisation of as-cast binary near gamma titanium aluminides, Jurnal Teknologi, 43A, 113

Duarte, 1999, As-cast titanium aluminides microstructure modification, Materials Research, 2, 191, 10.1590/S1516-14391999000300013

Moll, 1999, Laser forming of gamma titanium aluminide, 255

Srivastava, 2000, The optimization of processing parameters and characterization of microstructure of direct laser fabricated TiAl alloy components, Materials & Design, 21, 425, 10.1016/S0261-3069(99)00091-6

Cormier, 2005, Electron beam melting of gamma titanium aluminide

Cormier, 2007, Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders, Research Letters in Materials Science, 4

Murr, 2010, Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting, Acta Materialia, 58, 1887, 10.1016/j.actamat.2009.11.032

Wu, 2009, Oxidation-induced embrittlement of TiAl alloys, Intermetallics, 17, 540, 10.1016/j.intermet.2009.01.010

Pather, 2003, The effect of high temperature exposure on the tensile properties of γ TiAl alloys, Intermetallics, 11, 1015, 10.1016/S0966-9795(03)00116-X

Thomas, 2006, Effects of exposure at 700°C on RT tensile properties in a PM γ-TiAl alloy, Intermetallics, 14, 1143, 10.1016/j.intermet.2005.12.017

Lamirand, 2006, Properties of Ti–48Al–2Cr–2Nb with fully lamellar and duplex microstructure, Metallurgical and Materials Transactions A, 37, 2369, 10.1007/BF02586211

Lasalmonie, 2006, Intermetallics: why is it so difficult to introduce them in gas turbine engine, Intermetallics, 14, 1123, 10.1016/j.intermet.2006.01.064

Perdrix, 2001, Influence of nitrogen on the microstructure and mechanical properties of Ti–48Al alloy, Intermetallics, 9, 147, 10.1016/S0966-9795(00)00120-5

Austin MC, Kelly TJ, Huang SC. Titanium aluminide alloy with improved temperature capability. United States Patent 5,545,265; 1996.

Thomas, 2005, Cast and PM processing development in gamma aluminides, Intermetallics, 13, 944, 10.1016/j.intermet.2004.12.010

Kelly, 1994, Effect of elevated temperature exposure on cast gamma titanium aluminide (Ti–48Al–2Cr–2Nb), Scripta Metallurgica et Materialia, 30, 1105, 10.1016/0956-716X(94)90322-0