Electron acoustic solitons in the presence of an electron beam and superthermal electrons
Tóm tắt
Abstract. Arbitrary amplitude electron acoustic solitons are studied in an unmagnetized plasma having cold electrons and ions, superthermal hot electrons and an electron beam. Using the Sagdeev pseudo potential method, theoretical analysis is carried out by assuming superthermal hot electrons having kappa distribution. The results show that inclusion of an electron beam alters the minimum value of spectral index, κ, of the superthermal electron distribution and Mach number for which electron-acoustic solitons can exist and also changes their width and electric field amplitude. For the auroral region parameters, the maximum electric field amplitudes and soliton widths are found in the range ~(30–524) mV m−1 and ~(329–729) m, respectively, for fixed Mach number M = 1.1 and for electron beam speed of (660–1990) km s−1.
Từ khóa
Tài liệu tham khảo
Armstrong, T. P., Paonessa, M. T., Bell II, E. V., and Krimigis, S.M.: Voyager observations of Saturnian ion and electron phase space densities, J. Geophys. Res., 88, 8893–8904, 1983.
Berthomier, M., Pottelette, R., Malingre, M., and Khotyaintsev, Y.: Electron-acoustic solitons in an electron-beam plasma system, Phys. Plasmas, 7, 2987–2994, 2000.
Berthomier, M., Pottelette, R., Muschietti, L., Roth, I., and Carlson, C. W.: Scaling of 3D solitary waves observed by FAST and POLAR, Geophys. Res. Lett., 30, 2148, https://doi.org/10.1029/2003GL018491, 2003.
Cattell, C., Bergmann, R., Sigsbee, K., Carlson, C., Chatson, C., Ergun, R., McFadden, J., Mozer, F. S., Temerin, M., Strangeway, R., Elphic, R., Kistler, L., Moebius, E., Tang, L., Klumpar, D., and Pfaff, R.: The association of electrostatic ion cyclotron waves, ion and electron beams and field-aligned currents: FAST observations of an auroral zone crossing near midnight, Geophys. Res. Lett., 25, 2053–2056, 1998.
Devanandhan, S., Singh, S. V., and Lakhina, G. S.: Electron acoustic solitons with kappa-distributed electrons, Phys. Scr., 84, 025507, https://doi.org/10.1088/0031-8949/84/02/025507, 2011.
Dubouloz, N., Pottelette, R., Malingre, M., Holmgren G., and Lindqvist, P. A.: Detailed analysis of broadband electrostatic noise in the dayside auroral zone, J. Geophys. Res., 96, 3565–3579, 1991.
Dubouloz, N., Treumann, R. A., Pottelette R., and Malingre, M.: Turbulence generated by a gas of electron acoustic solitons, J. Geophys. Res., 98, 17415–17422, 1993.
El-Shewy, E. K.: Higher-order solution of an electron-acoustic solitary waves with non-thermal electrons, Chaos, Solitons Fractals, 34, 628–638, https://doi.org/10.1016/j.chaos.2006.03.103, 2007.
Ergun, R. E., Carlson, C. W., Muschietti, L., Roth, I., and McFadden, J. P.: Properties of fast solitary structures, Nonlin. Processes Geophys., 6, 187–194, https://doi.org/10.5194/npg-6-187-1999, 1999.
Gill, T. S., Kaur, H., and Saini, N. S.: Small amplitude electron-acoustic solitary waves in a plasma with nonthermal electrons. Chaos, Solitons Fractals, 30, 1020–1024, https://doi.org/10.1016/j.chaos.2005.09.070, 2006.
Hellberg, M. A. and Mace, R. L.: Generalized plasma dispersion function for a plasma with a kappa-Maxwellian velocity distribution, Phys. Plasmas, 9, 1495–1504, https://doi.org/10.1063/1.1462636, 2002.
Kakad, A. P., Singh, S. V., Reddy, R. V., Lakhina, G. S., Tagare, S. G., and Verheest, F.: Generation mechanism for electron acoustic solitary waves, Phys. Plasmas, 14, 052305, https://doi.org/10.1063/1.2732176, 2007.
Kakad, A. P., Singh, S. V., Reddy, R. V., Lakhina, G. S., and Tagare, S. G.: Electron acoustic solitary waves in the Earth's magnetotail region, Adv. Space. Res., 43, 1945–1949, https://doi.org/10.1016/j.asr.2009.03.005, 2009.
Lakhina, G. S., Kakad, A. P., Singh, S. V., and Verheest, F.: Ion- and electron-acoustic solitons in two-electron temperature space plasmas, Phys. Plasmas, 15, 062903, https://doi.org/10.1063/1.2930469, 2008a.
Lakhina, G. S., Singh, S. V., Kakad, A. P., Verheest, F., and Bharuthram, R.: Study of nonlinear ion- and electron-acoustic waves in multi-component space plasmas, Nonlin. Processes Geophys., 15, 903–913, https://doi.org/10.5194/npg-15-903-2008, 2008b.
Lakhina, G. S., Singh, S. V., Kakad, A. P., Goldstein, M. L., Vinas, A. F., and Pickett, J. S.: A mechanism for electrostatic solitary structures in the Earth's magnetosheath, J. Geophs. Res., 114, A09212, https://doi.org/10.1029/2009JA014306, 2009.
Lakhina, G. S., Singh, S. V., and Kakad, A. P.: Ion- and electron-acoustic solitons and double layers in multi-component space plasmas, Adv. Space Res., 47, 1558–1567, 2011.
Mace, R. L. and Hellberg, M. A., A dispersion function for plasmas containing superthermal particles, Phys. Plasmas, 2, 2098–2109, 1995.
Mace, R. L. and Hellberg, M. A.: The Korteweg-de Vries-Zakharov-Kuznetsov equation for electron-acoustic waves, Phys. Plasmas, 8, 2649–2656, https://doi.org/10.1063/1.1363665, 2001.
Mace, R. L., Baboolal, S., Bharuthram, R., and Hellberg, M. A.: Arbitrary-amplitude electron-acoustic solitons in a two-electron-component plasma, J. Plasma Phys., 45, 323–338, 1991.
Mace, R. L., Amery, G., and Hellberg, M. A.: The electron-acoustic mode in a plasma with hot suprathermal and cool Maxwellian electrons, Phys. Plasmas, 6, 44–49, 1999.
Marsch, E., Muhlhauser, K. H., Schwenn, R., Rosenbauer, H., Pillip W., and Neubauer, F. M.: Solar wind protons: Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU, J. Geophys. Res., 87, 52–72, 1982.
Miyake, T., Omura, Y., and Matsumoto, H.: Electrostatic particle simulations of solitary waves in the auroral region, J. Geophys. Res., 105, 23239–23249, 2000.
Pickett, J. S., Chen, L.-J., Kahler, S. W., Santol\\'ik, O., Goldstein, M. L., Lavraud, B., Décréau, P. M. E., Kessel, R., Lucek, E., Lakhina, G. S., Tsurutani, B. T., Gurnett, D. A., Cornilleau-Wehrlin, N., Fazakerley, A., Rème, H., and Balogh, A.: On the generation of solitary waves observed by Cluster in the near-Earth magnetosheath, Nonlin. Processes Geophys., 12, 181–193, https://doi.org/10.5194/npg-12-181-2005, 2005.
Pottelette, R., Ergun, R. E., Truemann, R. A., Berthomier, M, Carlson, C. W., McFadden, J. P., and Roth, I.: Modulated electron-acoustic waves in auroral density cavities: FAST observations, Geophys. Res. Lett., 26, 2629–2632, 1999.
Sahu, B.: Electron acoustic solitary waves and double layers with superthermal hot electrons, Phys. Plasmas, 17, 122305, https://doi.org/10.1063/1.3527988, 2010.
Singh, S. V. and Lakhina, G. S.: Electron acoustic solitary waves with non-thermal distribution of electrons, Nonlin. Processes Geophys., 11, 275–279, https://doi.org/10.5194/npg-11-275-2004, 2004.
Singh, S. V., Reddy, R. V., and Lakhina, G. S.: Broadband electrostatic noise due to nonlinear electron-acoustic waves, Adv. Space. Res., 28, 1643–1648, 2001.
Summers, D. and Thorne, R. M.: The modified plasma dispersion function, Phys. Fluids B, 3, 1835–1847, 1991.
Thorne, R. M. and Horne, R. B.: Landau damping of magnetospherically reflected whistlers, J. Geophys. Res., 99, 17249–17258, 1994.
Thorne, R. M. and Summers, D.: Landau damping in space plasmas, Phys. Fluids B, 3, 2117–2123, 1991a.
Thorne, R. M. and Summers, D.: Enhancement of wave growth for warm plasmas with a high-energy tail distribution, J. Geophys. Res., 96, 217–223, 1991b.
Vasyliunas, V. M.: A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3, J. Geophys. Res., 73, 2839–2884, 1968.
Verheest, F.: Obliquely propagating large amplitude solitary waves in charge neutral plasmas, Nonlin. Processes Geophys., 14, 49–57, https://doi.org/10.5194/npg-14-49-2007, 2007.
Verheest, F., Cattart, T., and Hellberg, M. A.: Compressive and rarefactive electron-acoustic solitons and double layers in space plasmas, Space Sci. Rev., 121, 299–311, https://doi.org/10.1007/s11214-006-4148-7, 2005.