Electron Storage in Electroactive Biofilms

Trends in Biotechnology - Tập 39 - Trang 34-42 - 2021
A. ter Heijne1, M.A. Pereira2, J. Pereira1,3, T. Sleutels3
1Environmental Technology, Wageningen University and Research, Wageningen, The Netherlands
2CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
3Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands

Tài liệu tham khảo

Logan, 2008, Microbial electrolysis cells for high yield hydrogen gas production from organic matter, Environ. Sci. Technol., 42, 8630, 10.1021/es801553z Logan, 2006, Microbial fuel cells: methodology and technology, Environ. Sci. Technol., 40, 5181, 10.1021/es0605016 Santoro, 2017, Microbial fuel cells: from fundamentals to applications. A review, J. Power Sources, 356, 225, 10.1016/j.jpowsour.2017.03.109 Kuntke, 2018, (Bio)electrochemical ammonia recovery: progress and perspectives, Appl. Microbiol. Biotechnol., 102, 3865, 10.1007/s00253-018-8888-6 Erable, 2010, Application of electro-active biofilms, Biofouling, 26, 57, 10.1080/08927010903161281 Lovley, 2011, A shift in the current: new applications and concepts for microbe-electrode electron exchange, Curr. Opin. Biotechnol., 22, 441, 10.1016/j.copbio.2011.01.009 Sleutels, 2016, Low substrate loading limits methanogenesis and leads to high Coulombic efficiency in bioelectrochemical systems, Microorganisms, 4, 7, 10.3390/microorganisms4010007 Georg, 2019, Competition of electrogens with methanogens for hydrogen in bioanodes, Water Res., 170, 115292, 10.1016/j.watres.2019.115292 Hamelers, 2010, New applications and performance of bioelectrochemical systems, Appl. Microbiol. Biotechnol., 85, 1673, 10.1007/s00253-009-2357-1 Janicek, 2014, Design of microbial fuel cells for practical application: a review and analysis of scale-up studies, Biofuels, 5, 79, 10.4155/bfs.13.69 Molenaar, 2017, Competition between methanogens and acetogens in biocathodes: a comparison between potentiostatic and galvanostatic control, Int. J. Mol. Sci., 18, 204, 10.3390/ijms18010204 Molenaar, 2019, Comparison of two sustainable counter electrodes for energy storage in the microbial rechargeable battery, ChemElectroChem, 6, 2464, 10.1002/celc.201900470 Sleutels, 2011, Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems, Bioresour. Technol., 102, 11172, 10.1016/j.biortech.2011.09.078 Heijne, 2020, Environmental science and ecotechnology bioelectrochemistry for flexible control of biological processes, Environ. Sci. Ecotechnol., 1, 100011, 10.1016/j.ese.2020.100011 Deeke, 2012, Capacitive bioanodes enable renewable energy storage in microbial fuel cells, Environ. Sci. Technol., 46, 3554, 10.1021/es204126r Zhang, 2018, Periodic polarization of electroactive biofilms increases current density and charge carriers concentration while modifying biofilm structure, Biosens. Bioelectron., 121, 183, 10.1016/j.bios.2018.08.045 Liu, 2018, Granular carbon-based electrodes as cathodes in methane-producing bioelectrochemical systems, Front. Bioeng. Biotechnol., 6, 78, 10.3389/fbioe.2018.00078 Bonanni, 2012, Charge accumulation and electron transfer kinetics in Geobacter sulfurreducens biofilms, Energy Environ. Sci., 5, 6188, 10.1039/c2ee02672d Schrott, 2011, Electrochemical insight into the mechanism of electron transport in biofilms of Geobacter sulfurreducens, Electrochim. Acta, 56, 10791, 10.1016/j.electacta.2011.07.001 Uría, 2011, Transient storage of electrical charge in biofilms of Shewanella oneidensis MR-1 growing in a microbial fuel cell, Environ. Sci. Technol., 45, 10250, 10.1021/es2025214 Zhang, 2019, Reversible effects of periodic polarization on anodic electroactive biofilms, ChemElectroChem, 6, 1921, 10.1002/celc.201900228 Deeke, 2013, Influence of the thickness of the capacitive layer on the performance of bioanodes in microbial fuel cells, J. Power Sources, 243, 611, 10.1016/j.jpowsour.2013.05.195 Gardel, 2012, Duty cycling influences current generation in multi-anode environmental microbial fuel cells, Environ. Sci. Technol., 46, 5222, 10.1021/es204622m Kubannek, 2018, Revealing metabolic storage processes in electrode respiring bacteria by differential electrochemical mass spectrometry, Bioelectrochemistry, 121, 160, 10.1016/j.bioelechem.2018.01.014 Nishio, 2013, Extracellular electron transfer enhances polyhydroxybutyrate productivity in Ralstonia eutropha, Environ. Sci. Technol. Lett., 1, 40, 10.1021/ez400085b Freguia, 2007, Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation, Environ. Sci. Technol., 41, 2915, 10.1021/es062611i Busalmen, 2008, C-type cytochromes wire electricity-producing bacteria to electrodes, Angew. Chem. Int. Ed Engl., 47, 4874, 10.1002/anie.200801310 Liu, 2012, Long-distance electron transfer by G. sulfurreducens biofilms results in accumulation of reduced c-type cytochromes, ChemSusChem, 5, 1047, 10.1002/cssc.201100734 Okamoto, 2014, Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH, Sci. Rep., 4, 5628, 10.1038/srep05628 Kotloski, 2013, Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis, mBio, 4, 10.1128/mBio.00553-12 Light, 2018, A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria, Nature, 562, 140, 10.1038/s41586-018-0498-z Ter Heijne, 2018, Quantification of bio-anode capacitance in bioelectrochemical systems using electrochemical impedance spectroscopy, J. Power Sources, 400, 533, 10.1016/j.jpowsour.2018.08.003 Malvankar, 2012, Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria, ChemPhysChem, 13, 463, 10.1002/cphc.201100865 Bueno, 2015, Biochemical capacitance of Geobacter sulfurreducens biofilms, ChemSusChem, 8, 2492, 10.1002/cssc.201403443 Guo, 2018, Impact of intermittent polarization on electrode-respiring Geobacter sulfurreducens biofilms, J. Power Sources, 406, 96, 10.1016/j.jpowsour.2018.10.053 Ter Heijne, 2015, Analysis of bio-anode performance through electrochemical impedance spectroscopy, Bioelectrochemistry, 106, 64, 10.1016/j.bioelechem.2015.04.002 Esteve-Núñez, 2008, Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens, Environ. Microbiol., 10, 497, 10.1111/j.1462-2920.2007.01470.x Fernandes, 2017, Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of Geobacter sulfurreducens, Biochem. J., 474, 797, 10.1042/BCJ20161022 Shively, 2006, Prokaryote inclusions: descriptions and discoveries, 3 Wang, 2019, Bioinformatics analysis of metabolism pathways of archaeal energy reserves, Sci. Rep., 9, 1034, 10.1038/s41598-018-37768-0 Castro, 2019, Oil and hydrocarbon-producing bacteria, 471 Srikanth, 2012, Microaerophilic microenvironment at biocathode enhances electrogenesis with simultaneous synthesis of polyhydroxyalkanoates (PHA) in bioelectrochemical system (BES), Bioresour. Technol., 125, 291, 10.1016/j.biortech.2012.08.060 Yamane, 1993, Yield of poly-D(-)-3-hydroxybutyrate from various carbon sources: a theoretical study, Biotechnol. Bioeng., 41, 165, 10.1002/bit.260410122 Farhana, 2010, Reductive stress in microbes: implications for understanding Mycobacterium tuberculosis disease and persistence, Adv. Microb. Physiol., 57, 43, 10.1016/B978-0-12-381045-8.00002-3 Molenaar, 2018, In situ biofilm quantification in bioelectrochemical systems by using optical coherence tomography, ChemSusChem, 82, 851 Baudler, 2015, Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems, Energy Environ. Sci., 8, 2048, 10.1039/C5EE00866B Virdis, 2012, Non-invasive characterization of electrochemically active microbial biofilms using confocal Raman microscopy, Energy Environ. Sci., 5, 7017, 10.1039/c2ee03374g Visser, 1997, Sulfur production by obligately chemolithoautotrophic Thiobacillus species, Appl. Environ. Microbiol., 63, 2300, 10.1128/aem.63.6.2300-2305.1997 Fricke, 2008, On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells, Energy Environ. Sci., 1, 144, 10.1039/b802363h Kourmentza, 2017, Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production, Bioengineering, 4, 55, 10.3390/bioengineering4020055 Brigham, 2011, Bacterial carbon storage to value added products, J. Microb. Biochem. Technol., S3, 002, 10.4172/1948-5948.S3-002 Ajao, 2019, Valorization of glycerol/ethanol-rich wastewater to bioflocculants: recovery, properties, and performance, J. Hazard. Mater., 375, 273, 10.1016/j.jhazmat.2019.05.009 Yates, 2017, Microbial electrochemical energy storage and recovery in a combined electrotrophic and electrogenic biofilm, Environ. Sci. Technol. Lett., 4, 374, 10.1021/acs.estlett.7b00335 Riedl, 2019, Cultivating electrochemically active biofilms at continuously changing electrode potentials, ChemElectroChem, 6, 2238, 10.1002/celc.201900036 Ajao, 2018, Natural flocculants from fresh and saline wastewater: comparative properties and flocculation performances, Chem. Eng. J., 349, 622, 10.1016/j.cej.2018.05.123 Dopson, 2016, Possibilities for extremophilic microorganisms in microbial electrochemical systems, FEMS Microbiol. Rev., 40, 164, 10.1093/femsre/fuv044 Rabaey, 2010, Microbial electrosynthesis – revisiting the electrical route for microbial production, Nat. Rev. Microbiol., 8, 706, 10.1038/nrmicro2422 Jourdin, 2014, A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis, J. Mater. Chem. A, 2, 13093, 10.1039/C4TA03101F Clauwaert, 2007, Open air biocathode enables effective electricity generation with microbial fuel cells, Environ. Sci. Technol., 41, 7564, 10.1021/es0709831 Ter Heijne, 2010, Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells, Environ. Sci. Technol., 44, 7151, 10.1021/es100950t de Rink, 2019, Increasing the selectivity for sulfur formation in biological gas desulfurization, Environ. Sci. Technol., 53, 4519, 10.1021/acs.est.8b06749 van den Bosch, 2007, Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor, Biotechnol. Bioeng., 97, 1053, 10.1002/bit.21326 Ter Heijne, 2018, Bacteria as an electron shuttle for sulfide oxidation, Environ. Sci. Technol. Lett., 5, 495, 10.1021/acs.estlett.8b00319 Nevin, 2010, Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds, mBio, 1, 10.1128/mBio.00103-10 Mozejko-Ciesielska, 2019, Pseudomonas species as producers of eco-friendly polyhydroxyalkanoates, J. Polym. Environ., 27, 1151, 10.1007/s10924-019-01422-1 Logan, 2019, Electroactive microorganisms in bioelectrochemical systems, Nat. Rev. Microbiol., 17, 307, 10.1038/s41579-019-0173-x Kracke, 2015, Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems, Front. Microbiol., 6, 575, 10.3389/fmicb.2015.00575 Xiao, 2015, Pyrosequencing reveals a core community of anodic bacterial biofilms in bioelectrochemical systems from China, Front. Microbiol., 6, 1410, 10.3389/fmicb.2015.01410 Barbosa, 2017, Investigating bacterial community changes and organic substrate degradation in microbial fuel cells operating on real human urine, Environ. Sci. Water Res. Technol., 3, 897, 10.1039/C7EW00087A Zhang, 1994, Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains, Appl. Environ. Microbiol., 60, 1198, 10.1128/aem.60.4.1198-1205.1994 Singh, 2009, Bacillus subtilis as potential producer for polyhydroxyalkanoates, Microb. Cell Factories, 8, 38, 10.1186/1475-2859-8-38 Arshad, 2017, Biosynthesis of polyhydroxyalkanoates from styrene by Enterobacter spp. isolated from polluted environment, Front. Biol., 12, 210, 10.1007/s11515-017-1446-2 Sayyed, 2004, Production of poly-β-hydroxybutyrate from Alcaligenes faecalis, Indian J. Microbiol., 44, 269 Onderko, 2019, Electrochemical characterization of Marinobacter atlanticus strain CP1 suggests a role for trace minerals in electrogenic activity, Front. Energy Res., 7, 60, 10.3389/fenrg.2019.00060 Bird, 2018, Development of a genetic system for Marinobacter atlanticus CP1 (sp. nov.), a wax ester producing strain isolated from an autotrophic biocathode, Front. Microbiol., 9, 3176, 10.3389/fmicb.2018.03176 Knutson, 2019, Marinobacter as a model organism for wax ester accumulation in bacteria, 237 Wa, 2005, Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots, J. Bacteriol., 187, 3607, 10.1128/JB.187.11.3607-3619.2005