Electron Storage in Electroactive Biofilms
Tài liệu tham khảo
Logan, 2008, Microbial electrolysis cells for high yield hydrogen gas production from organic matter, Environ. Sci. Technol., 42, 8630, 10.1021/es801553z
Logan, 2006, Microbial fuel cells: methodology and technology, Environ. Sci. Technol., 40, 5181, 10.1021/es0605016
Santoro, 2017, Microbial fuel cells: from fundamentals to applications. A review, J. Power Sources, 356, 225, 10.1016/j.jpowsour.2017.03.109
Kuntke, 2018, (Bio)electrochemical ammonia recovery: progress and perspectives, Appl. Microbiol. Biotechnol., 102, 3865, 10.1007/s00253-018-8888-6
Erable, 2010, Application of electro-active biofilms, Biofouling, 26, 57, 10.1080/08927010903161281
Lovley, 2011, A shift in the current: new applications and concepts for microbe-electrode electron exchange, Curr. Opin. Biotechnol., 22, 441, 10.1016/j.copbio.2011.01.009
Sleutels, 2016, Low substrate loading limits methanogenesis and leads to high Coulombic efficiency in bioelectrochemical systems, Microorganisms, 4, 7, 10.3390/microorganisms4010007
Georg, 2019, Competition of electrogens with methanogens for hydrogen in bioanodes, Water Res., 170, 115292, 10.1016/j.watres.2019.115292
Hamelers, 2010, New applications and performance of bioelectrochemical systems, Appl. Microbiol. Biotechnol., 85, 1673, 10.1007/s00253-009-2357-1
Janicek, 2014, Design of microbial fuel cells for practical application: a review and analysis of scale-up studies, Biofuels, 5, 79, 10.4155/bfs.13.69
Molenaar, 2017, Competition between methanogens and acetogens in biocathodes: a comparison between potentiostatic and galvanostatic control, Int. J. Mol. Sci., 18, 204, 10.3390/ijms18010204
Molenaar, 2019, Comparison of two sustainable counter electrodes for energy storage in the microbial rechargeable battery, ChemElectroChem, 6, 2464, 10.1002/celc.201900470
Sleutels, 2011, Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems, Bioresour. Technol., 102, 11172, 10.1016/j.biortech.2011.09.078
Heijne, 2020, Environmental science and ecotechnology bioelectrochemistry for flexible control of biological processes, Environ. Sci. Ecotechnol., 1, 100011, 10.1016/j.ese.2020.100011
Deeke, 2012, Capacitive bioanodes enable renewable energy storage in microbial fuel cells, Environ. Sci. Technol., 46, 3554, 10.1021/es204126r
Zhang, 2018, Periodic polarization of electroactive biofilms increases current density and charge carriers concentration while modifying biofilm structure, Biosens. Bioelectron., 121, 183, 10.1016/j.bios.2018.08.045
Liu, 2018, Granular carbon-based electrodes as cathodes in methane-producing bioelectrochemical systems, Front. Bioeng. Biotechnol., 6, 78, 10.3389/fbioe.2018.00078
Bonanni, 2012, Charge accumulation and electron transfer kinetics in Geobacter sulfurreducens biofilms, Energy Environ. Sci., 5, 6188, 10.1039/c2ee02672d
Schrott, 2011, Electrochemical insight into the mechanism of electron transport in biofilms of Geobacter sulfurreducens, Electrochim. Acta, 56, 10791, 10.1016/j.electacta.2011.07.001
Uría, 2011, Transient storage of electrical charge in biofilms of Shewanella oneidensis MR-1 growing in a microbial fuel cell, Environ. Sci. Technol., 45, 10250, 10.1021/es2025214
Zhang, 2019, Reversible effects of periodic polarization on anodic electroactive biofilms, ChemElectroChem, 6, 1921, 10.1002/celc.201900228
Deeke, 2013, Influence of the thickness of the capacitive layer on the performance of bioanodes in microbial fuel cells, J. Power Sources, 243, 611, 10.1016/j.jpowsour.2013.05.195
Gardel, 2012, Duty cycling influences current generation in multi-anode environmental microbial fuel cells, Environ. Sci. Technol., 46, 5222, 10.1021/es204622m
Kubannek, 2018, Revealing metabolic storage processes in electrode respiring bacteria by differential electrochemical mass spectrometry, Bioelectrochemistry, 121, 160, 10.1016/j.bioelechem.2018.01.014
Nishio, 2013, Extracellular electron transfer enhances polyhydroxybutyrate productivity in Ralstonia eutropha, Environ. Sci. Technol. Lett., 1, 40, 10.1021/ez400085b
Freguia, 2007, Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation, Environ. Sci. Technol., 41, 2915, 10.1021/es062611i
Busalmen, 2008, C-type cytochromes wire electricity-producing bacteria to electrodes, Angew. Chem. Int. Ed Engl., 47, 4874, 10.1002/anie.200801310
Liu, 2012, Long-distance electron transfer by G. sulfurreducens biofilms results in accumulation of reduced c-type cytochromes, ChemSusChem, 5, 1047, 10.1002/cssc.201100734
Okamoto, 2014, Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH, Sci. Rep., 4, 5628, 10.1038/srep05628
Kotloski, 2013, Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis, mBio, 4, 10.1128/mBio.00553-12
Light, 2018, A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria, Nature, 562, 140, 10.1038/s41586-018-0498-z
Ter Heijne, 2018, Quantification of bio-anode capacitance in bioelectrochemical systems using electrochemical impedance spectroscopy, J. Power Sources, 400, 533, 10.1016/j.jpowsour.2018.08.003
Malvankar, 2012, Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria, ChemPhysChem, 13, 463, 10.1002/cphc.201100865
Bueno, 2015, Biochemical capacitance of Geobacter sulfurreducens biofilms, ChemSusChem, 8, 2492, 10.1002/cssc.201403443
Guo, 2018, Impact of intermittent polarization on electrode-respiring Geobacter sulfurreducens biofilms, J. Power Sources, 406, 96, 10.1016/j.jpowsour.2018.10.053
Ter Heijne, 2015, Analysis of bio-anode performance through electrochemical impedance spectroscopy, Bioelectrochemistry, 106, 64, 10.1016/j.bioelechem.2015.04.002
Esteve-Núñez, 2008, Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens, Environ. Microbiol., 10, 497, 10.1111/j.1462-2920.2007.01470.x
Fernandes, 2017, Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of Geobacter sulfurreducens, Biochem. J., 474, 797, 10.1042/BCJ20161022
Shively, 2006, Prokaryote inclusions: descriptions and discoveries, 3
Wang, 2019, Bioinformatics analysis of metabolism pathways of archaeal energy reserves, Sci. Rep., 9, 1034, 10.1038/s41598-018-37768-0
Castro, 2019, Oil and hydrocarbon-producing bacteria, 471
Srikanth, 2012, Microaerophilic microenvironment at biocathode enhances electrogenesis with simultaneous synthesis of polyhydroxyalkanoates (PHA) in bioelectrochemical system (BES), Bioresour. Technol., 125, 291, 10.1016/j.biortech.2012.08.060
Yamane, 1993, Yield of poly-D(-)-3-hydroxybutyrate from various carbon sources: a theoretical study, Biotechnol. Bioeng., 41, 165, 10.1002/bit.260410122
Farhana, 2010, Reductive stress in microbes: implications for understanding Mycobacterium tuberculosis disease and persistence, Adv. Microb. Physiol., 57, 43, 10.1016/B978-0-12-381045-8.00002-3
Molenaar, 2018, In situ biofilm quantification in bioelectrochemical systems by using optical coherence tomography, ChemSusChem, 82, 851
Baudler, 2015, Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems, Energy Environ. Sci., 8, 2048, 10.1039/C5EE00866B
Virdis, 2012, Non-invasive characterization of electrochemically active microbial biofilms using confocal Raman microscopy, Energy Environ. Sci., 5, 7017, 10.1039/c2ee03374g
Visser, 1997, Sulfur production by obligately chemolithoautotrophic Thiobacillus species, Appl. Environ. Microbiol., 63, 2300, 10.1128/aem.63.6.2300-2305.1997
Fricke, 2008, On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells, Energy Environ. Sci., 1, 144, 10.1039/b802363h
Kourmentza, 2017, Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production, Bioengineering, 4, 55, 10.3390/bioengineering4020055
Brigham, 2011, Bacterial carbon storage to value added products, J. Microb. Biochem. Technol., S3, 002, 10.4172/1948-5948.S3-002
Ajao, 2019, Valorization of glycerol/ethanol-rich wastewater to bioflocculants: recovery, properties, and performance, J. Hazard. Mater., 375, 273, 10.1016/j.jhazmat.2019.05.009
Yates, 2017, Microbial electrochemical energy storage and recovery in a combined electrotrophic and electrogenic biofilm, Environ. Sci. Technol. Lett., 4, 374, 10.1021/acs.estlett.7b00335
Riedl, 2019, Cultivating electrochemically active biofilms at continuously changing electrode potentials, ChemElectroChem, 6, 2238, 10.1002/celc.201900036
Ajao, 2018, Natural flocculants from fresh and saline wastewater: comparative properties and flocculation performances, Chem. Eng. J., 349, 622, 10.1016/j.cej.2018.05.123
Dopson, 2016, Possibilities for extremophilic microorganisms in microbial electrochemical systems, FEMS Microbiol. Rev., 40, 164, 10.1093/femsre/fuv044
Rabaey, 2010, Microbial electrosynthesis – revisiting the electrical route for microbial production, Nat. Rev. Microbiol., 8, 706, 10.1038/nrmicro2422
Jourdin, 2014, A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis, J. Mater. Chem. A, 2, 13093, 10.1039/C4TA03101F
Clauwaert, 2007, Open air biocathode enables effective electricity generation with microbial fuel cells, Environ. Sci. Technol., 41, 7564, 10.1021/es0709831
Ter Heijne, 2010, Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells, Environ. Sci. Technol., 44, 7151, 10.1021/es100950t
de Rink, 2019, Increasing the selectivity for sulfur formation in biological gas desulfurization, Environ. Sci. Technol., 53, 4519, 10.1021/acs.est.8b06749
van den Bosch, 2007, Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor, Biotechnol. Bioeng., 97, 1053, 10.1002/bit.21326
Ter Heijne, 2018, Bacteria as an electron shuttle for sulfide oxidation, Environ. Sci. Technol. Lett., 5, 495, 10.1021/acs.estlett.8b00319
Nevin, 2010, Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds, mBio, 1, 10.1128/mBio.00103-10
Mozejko-Ciesielska, 2019, Pseudomonas species as producers of eco-friendly polyhydroxyalkanoates, J. Polym. Environ., 27, 1151, 10.1007/s10924-019-01422-1
Logan, 2019, Electroactive microorganisms in bioelectrochemical systems, Nat. Rev. Microbiol., 17, 307, 10.1038/s41579-019-0173-x
Kracke, 2015, Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems, Front. Microbiol., 6, 575, 10.3389/fmicb.2015.00575
Xiao, 2015, Pyrosequencing reveals a core community of anodic bacterial biofilms in bioelectrochemical systems from China, Front. Microbiol., 6, 1410, 10.3389/fmicb.2015.01410
Barbosa, 2017, Investigating bacterial community changes and organic substrate degradation in microbial fuel cells operating on real human urine, Environ. Sci. Water Res. Technol., 3, 897, 10.1039/C7EW00087A
Zhang, 1994, Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains, Appl. Environ. Microbiol., 60, 1198, 10.1128/aem.60.4.1198-1205.1994
Singh, 2009, Bacillus subtilis as potential producer for polyhydroxyalkanoates, Microb. Cell Factories, 8, 38, 10.1186/1475-2859-8-38
Arshad, 2017, Biosynthesis of polyhydroxyalkanoates from styrene by Enterobacter spp. isolated from polluted environment, Front. Biol., 12, 210, 10.1007/s11515-017-1446-2
Sayyed, 2004, Production of poly-β-hydroxybutyrate from Alcaligenes faecalis, Indian J. Microbiol., 44, 269
Onderko, 2019, Electrochemical characterization of Marinobacter atlanticus strain CP1 suggests a role for trace minerals in electrogenic activity, Front. Energy Res., 7, 60, 10.3389/fenrg.2019.00060
Bird, 2018, Development of a genetic system for Marinobacter atlanticus CP1 (sp. nov.), a wax ester producing strain isolated from an autotrophic biocathode, Front. Microbiol., 9, 3176, 10.3389/fmicb.2018.03176
Knutson, 2019, Marinobacter as a model organism for wax ester accumulation in bacteria, 237
Wa, 2005, Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots, J. Bacteriol., 187, 3607, 10.1128/JB.187.11.3607-3619.2005