Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm
Tài liệu tham khảo
Boussaïd, 2013, A survey on optimization metaheuristics, Inf. Sci., 237, 82, 10.1016/j.ins.2013.02.041
Van Laarhoven, 1987
Glover, 1986, Future paths for integer programming and links to artificial intelligence, Comput. Oper. Res., 13, 533, 10.1016/0305-0548(86)90048-1
Omran, 2008, Global-best harmony search, Appl. Math. Comput., 198, 643, 10.1016/j.amc.2007.09.004
M. Birattari, L. Paquete, T. Strutzle, K. Varrentrapp, Classification of Metaheuristics and Design of Experiments for the Analysis of Components Tech. Rep. AIDA-01-05, 2001.
Holland, 1975
Rao, 2012, Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems, Inf. Sci., 183, 1, 10.1016/j.ins.2011.08.006
J. Kennedy, The particle swarm: social adaptation of knowledge, in: IEEE International Conference on Evolutionary Computation, 1997, pp. 303–308.
Liang, 2006, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans. Evol. Comput., 10, 281, 10.1109/TEVC.2005.857610
Wang, 2013, Diversity enhanced particle swarm optimization with neighborhood search, Inf. Sci., 223, 119, 10.1016/j.ins.2012.10.012
Tanweer, 2015, Self regulating particle swarm optimization algorithm, Inf. Sci., 294, 182, 10.1016/j.ins.2014.09.053
Storn, 1995, Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces, ICSI Berkeley
Geem, 2001, A new heuristic optimization algorithm: harmony search, Simulation, 76, 60, 10.1177/003754970107600201
Geem, 2010, 1
N. Tayarani, M. Akbarzadeh-T, Magnetic optimization algorithms a new synthesis, in: IEEE Congress on Evolutionary Computation, CEC 2008 (IEEE World Congress on Computational Intelligence), 2008, pp. 2659–2664.
Karaboga, 2007, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim., 39, 459, 10.1007/s10898-007-9149-x
Karaboga, 2014, A comprehensive survey: artificial bee colony (ABC) algorithm and applications, Artif. Intell. Rev., 42, 21, 10.1007/s10462-012-9328-0
He, 2009, Group search optimizer: an optimization algorithm inspired by animal searching behavior, IEEE Trans. Evol. Comput., 13, 973, 10.1109/TEVC.2009.2011992
Tayarani-N, 2014, Magnetic-inspired optimization algorithms: operators and structures, Swarm Evol. Comput., 19, 82, 10.1016/j.swevo.2014.06.004
Rashedi, 2009, GSA: a gravitational search algorithm, Inf. Sci., 179, 2232, 10.1016/j.ins.2009.03.004
Kaveh, 2013, Magnetic charged system search: a new meta-heuristic algorithm for optimization, Acta Mech., 224, 85, 10.1007/s00707-012-0745-6
Javidy, 2015, Ions motion algorithm for solving optimization problems, Applied Soft Computing, 32, 72, 10.1016/j.asoc.2015.03.035
Livio, 2008
Srinivas, 1994, Genetic algorithms: a survey, Computer, 27, 17, 10.1109/2.294849
Wei, 2004, Survey on particle swarm optimization algorithm, Eng. Sci., 5, 87
Akbari, 2012, A multi-objective artificial bee colony algorithm, Swarm Evol. Comput., 2, 39, 10.1016/j.swevo.2011.08.001
Yazdani, 2014, A gravitational search algorithm for multimodal optimization, Swarm Evol. Comput., 14, 1, 10.1016/j.swevo.2013.08.001
Wang, 2011, Differential evolution with composite trial vector generation strategies and control parameters, IEEE Trans. Evol. Comput., 15, 55, 10.1109/TEVC.2010.2087271
Derrac, 2011, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput., 1, 3, 10.1016/j.swevo.2011.02.002
Kumar, 2014, Directed bee colony optimization algorithm, Swarm Evol. Comput., 17, 60, 10.1016/j.swevo.2014.03.001
Mirjalili, 2013, S-shaped versus V-shaped transfer functions for binary particle swarm optimization, Swarm Evol. Comput., 9, 1, 10.1016/j.swevo.2012.09.002
R. Tanabe, A.S. Fukunaga, Improving the search performance of SHADE using linear population size reduction, in: IEEE Congress on Evolutionary Computation (CEC), 2014, pp. 1658–1665.
Beheshti, 2015, Non-parametric particle swarm optimization for global optimization, Appl. Soft Comput., 28, 345, 10.1016/j.asoc.2014.12.015