Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm

Swarm and Evolutionary Computation - Tập 26 - Trang 8-22 - 2016
Hosein Abedinpourshotorban1,2, Siti Mariyam Shamsuddin1, Zahra Beheshti1, Dayang N.A. Jawawi2
1UTM Big Data Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
2Department of Software Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

Tài liệu tham khảo

Boussaïd, 2013, A survey on optimization metaheuristics, Inf. Sci., 237, 82, 10.1016/j.ins.2013.02.041 Van Laarhoven, 1987 Glover, 1986, Future paths for integer programming and links to artificial intelligence, Comput. Oper. Res., 13, 533, 10.1016/0305-0548(86)90048-1 Omran, 2008, Global-best harmony search, Appl. Math. Comput., 198, 643, 10.1016/j.amc.2007.09.004 M. Birattari, L. Paquete, T. Strutzle, K. Varrentrapp, Classification of Metaheuristics and Design of Experiments for the Analysis of Components Tech. Rep. AIDA-01-05, 2001. Holland, 1975 Rao, 2012, Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems, Inf. Sci., 183, 1, 10.1016/j.ins.2011.08.006 J. Kennedy, The particle swarm: social adaptation of knowledge, in: IEEE International Conference on Evolutionary Computation, 1997, pp. 303–308. Liang, 2006, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans. Evol. Comput., 10, 281, 10.1109/TEVC.2005.857610 Wang, 2013, Diversity enhanced particle swarm optimization with neighborhood search, Inf. Sci., 223, 119, 10.1016/j.ins.2012.10.012 Tanweer, 2015, Self regulating particle swarm optimization algorithm, Inf. Sci., 294, 182, 10.1016/j.ins.2014.09.053 Storn, 1995, Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces, ICSI Berkeley Geem, 2001, A new heuristic optimization algorithm: harmony search, Simulation, 76, 60, 10.1177/003754970107600201 Geem, 2010, 1 N. Tayarani, M. Akbarzadeh-T, Magnetic optimization algorithms a new synthesis, in: IEEE Congress on Evolutionary Computation, CEC 2008 (IEEE World Congress on Computational Intelligence), 2008, pp. 2659–2664. Karaboga, 2007, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim., 39, 459, 10.1007/s10898-007-9149-x Karaboga, 2014, A comprehensive survey: artificial bee colony (ABC) algorithm and applications, Artif. Intell. Rev., 42, 21, 10.1007/s10462-012-9328-0 He, 2009, Group search optimizer: an optimization algorithm inspired by animal searching behavior, IEEE Trans. Evol. Comput., 13, 973, 10.1109/TEVC.2009.2011992 Tayarani-N, 2014, Magnetic-inspired optimization algorithms: operators and structures, Swarm Evol. Comput., 19, 82, 10.1016/j.swevo.2014.06.004 Rashedi, 2009, GSA: a gravitational search algorithm, Inf. Sci., 179, 2232, 10.1016/j.ins.2009.03.004 Kaveh, 2013, Magnetic charged system search: a new meta-heuristic algorithm for optimization, Acta Mech., 224, 85, 10.1007/s00707-012-0745-6 Javidy, 2015, Ions motion algorithm for solving optimization problems, Applied Soft Computing, 32, 72, 10.1016/j.asoc.2015.03.035 Livio, 2008 Srinivas, 1994, Genetic algorithms: a survey, Computer, 27, 17, 10.1109/2.294849 Wei, 2004, Survey on particle swarm optimization algorithm, Eng. Sci., 5, 87 Akbari, 2012, A multi-objective artificial bee colony algorithm, Swarm Evol. Comput., 2, 39, 10.1016/j.swevo.2011.08.001 Yazdani, 2014, A gravitational search algorithm for multimodal optimization, Swarm Evol. Comput., 14, 1, 10.1016/j.swevo.2013.08.001 Wang, 2011, Differential evolution with composite trial vector generation strategies and control parameters, IEEE Trans. Evol. Comput., 15, 55, 10.1109/TEVC.2010.2087271 Derrac, 2011, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput., 1, 3, 10.1016/j.swevo.2011.02.002 Kumar, 2014, Directed bee colony optimization algorithm, Swarm Evol. Comput., 17, 60, 10.1016/j.swevo.2014.03.001 Mirjalili, 2013, S-shaped versus V-shaped transfer functions for binary particle swarm optimization, Swarm Evol. Comput., 9, 1, 10.1016/j.swevo.2012.09.002 R. Tanabe, A.S. Fukunaga, Improving the search performance of SHADE using linear population size reduction, in: IEEE Congress on Evolutionary Computation (CEC), 2014, pp. 1658–1665. Beheshti, 2015, Non-parametric particle swarm optimization for global optimization, Appl. Soft Comput., 28, 345, 10.1016/j.asoc.2014.12.015