Electrolyte solutions design for lithium-sulfur batteries

Joule - Tập 5 Số 9 - Trang 2323-2364 - 2021
Yatao Liu1, Yuval Elias2, Jiashen Meng1, Doron Aurbach2, Ruqiang Zou1, Dingguo Xia1, Quanquan Pang1
1Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
2Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741

Cano, 2018, Batteries and fuel cells for emerging electric vehicle markets, Nat. Energy, 3, 279, 10.1038/s41560-018-0108-1

Bruce, 2011, Li-O2 and Li-S batteries with high energy storage, Nat. Mater., 11, 19, 10.1038/nmat3191

Choi, 2016, Promise and reality of post-lithium-ion batteries with high energy densities, Nat. Rev. Mater., 1, 16013, 10.1038/natrevmats.2016.13

Ji, 2009, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater., 8, 500, 10.1038/nmat2460

Liu, 2019, NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium–sulfur battery, Adv. Energy Mater., 9, 1803477, 10.1002/aenm.201803477

Gao, 2010, Multi-electron reaction materials for high energy density batteries, Energy Environ. Sci., 3, 174, 10.1039/B916098A

Yang, 2013, Nanostructured sulfur cathodes, Chem. Soc. Rev., 42, 3018, 10.1039/c2cs35256g

Yin, 2013, Lithium-sulfur batteries: electrochemistry, materials, and prospects, Angew. Chem. Int. Ed. Engl., 52, 13186, 10.1002/anie.201304762

Jayaprakash, 2011, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries, Angew. Chem. Int. Ed. Engl., 50, 5904, 10.1002/anie.201100637

Xu, 2014, Sulfur–graphene nanostructured cathodes via ball-milling for high-performance lithium–sulfur batteries, ACS Nano, 8, 10920, 10.1021/nn5047585

Wei Seh, 2013, Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries, Nat. Commun., 4, 1331, 10.1038/ncomms2327

Li, 2016, A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries, Nat. Commun., 7, 13065, 10.1038/ncomms13065

Liu, 2021, Constructing high gravimetric and volumetric capacity sulfur cathode with LiCoO2 nanofibers as carbon-free sulfur host for lithium-sulfur battery, Sci. China Mater., 64, 1343, 10.1007/s40843-020-1552-7

Elazari, 2011, Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries, Adv. Mater., 23, 5641, 10.1002/adma.201103274

Rosenman, 2016, Facile synthesis and very stable cycling of polyvinylidene dichloride derived carbon: sulfur composite cathode, J. Electrochem. Soc., 163, A1829, 10.1149/2.0151609jes

Jin, 2012, Application of lithiated nafion ionomer film as functional separator for lithium sulfur cells, J. Power Sources, 218, 163, 10.1016/j.jpowsour.2012.06.100

He, 2018, Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries, Energy Environ. Sci., 11, 2560, 10.1039/C8EE00893K

Pang, 2018, Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium–sulfur batteries, Adv. Energy Mater., 8, 1702288, 10.1002/aenm.201702288

Balach, 2015, Functional mesoporous carbon-coated separator for long-life, high-energy lithium–sulfur batteries, Adv. Funct. Mater., 25, 5285, 10.1002/adfm.201502251

Wu, 2015, Lithium iodide as a promising electrolyte additive for lithium–sulfur batteries: mechanisms of performance enhancement, Adv. Mater., 27, 101, 10.1002/adma.201404194

Gerber, 2016, Three-dimensional growth of Li2S in lithium–sulfur batteries promoted by a redox mediator, Nano Lett, 16, 549, 10.1021/acs.nanolett.5b04189

Zhao, 2020, Dictating high-capacity lithium–sulfur batteries through redox-mediated lithium sulfide growth, Small Methods, 4, 1900344, 10.1002/smtd.201900344

Aurbach, 2009, On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries, J. Electrochem. Soc., 156, A694, 10.1149/1.3148721

Meini, 2014, The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li–S battery systems, J. Phys. Chem. Lett., 5, 915, 10.1021/jz500222f

Ma, 2014, A lithium anode protection guided highly-stable lithium–sulfur battery, Chem. Commun. (Camb), 50, 14209, 10.1039/C4CC05535G

Li, 2017, Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries, Nat. Commun., 8, 850, 10.1038/s41467-017-00974-x

Liang, 2017, A facile surface chemistry route to a stabilized lithium metal anode, Nat. Energy, 2, 17119, 10.1038/nenergy.2017.119

Kong, 2019, Lithium–magnesium alloy as a stable anode for lithium–sulfur battery, Adv. Funct. Mater., 29, 1808756, 10.1002/adfm.201808756

Xue, 2019, Manipulating sulfur mobility enables advanced Li-S batteries, Matter, 1, 1047, 10.1016/j.matt.2019.07.002

Elazari, 2012, Rechargeable lithiated silicon–sulfur (SLS) battery prototypes, Electrochem. Commun., 14, 21, 10.1016/j.elecom.2011.10.020

Zhao, 2020, A perspective toward practical lithium–sulfur batteries, ACS Cent. Sci., 6, 1095, 10.1021/acscentsci.0c00449

Lin, 2018, Aligning academia and industry for unified battery performance metrics, Nat. Commun., 9, 5262, 10.1038/s41467-018-07599-8

Nazar, 2014, Lithium-sulfur batteries, MRS Bull, 39, 436, 10.1557/mrs.2014.86

Barghamadi, 2014, Lithium–sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution?, Energy Environ. Sci., 7, 3902, 10.1039/C4EE02192D

Zhang, 2013, New insight into liquid electrolyte of rechargeable lithium/sulfur battery, Electrochim. Acta, 97, 226, 10.1016/j.electacta.2013.02.122

Rosenman, 2015, Review on Li-sulfur battery systems: an integral perspective, Adv. Energy Mater., 5, 1500212, 10.1002/aenm.201500212

Bhargav, 2020, Lithium-sulfur batteries: attaining the critical metrics, Joule, 4, 285, 10.1016/j.joule.2020.01.001

Shen, 2017, Understanding the role of lithium polysulfide solubility in limiting lithium-sulfur cell capacity, Electrochim. Acta, 248, 90, 10.1016/j.electacta.2017.07.123

Zhang, 2012, Improved cyclability of liquid electrolyte lithium/sulfur batteries by optimizing electrolyte/sulfur ratio, Energies, 5, 5190, 10.3390/en5125190

Cao, 2019, Bridging the academic and industrial metrics for next-generation practical batteries, Nat. Nanotechnol., 14, 200, 10.1038/s41565-019-0371-8

Liu, 2021, Strategy of enhancing the volumetric energy density for lithium-sulfur batteries, Adv. Mater., 33, e2003955, 10.1002/adma.202003955

Wang, 2020, Challenges on practicalization of lithium sulfur batteries, Energy Storage Sci. Technol., 9, 593

Yanagi, 2020, Effects of polysulfide solubility and Li ion transport on performance of Li–S batteries using sparingly solvating electrolytes, J. Electrochem. Soc., 167, 070531, 10.1149/1945-7111/ab7a81

Fan, 2016, Solvent effects on polysulfide redox kinetics and ionic conductivity in lithium-sulfur batteries, J. Electrochem. Soc., 163, A3111, 10.1149/2.1181614jes

Fan, 2017, Electrodeposition kinetics in Li-S batteries: effects of low electrolyte/sulfur ratios and deposition surface composition, J. Electrochem. Soc., 164, A917, 10.1149/2.0051706jes

Sun, 2018, Effect of electrolyte on high sulfur loading Li-S batteries, J. Electrochem. Soc., 165, A416, 10.1149/2.0071803jes

Cheng, 2017, The Gap between long lifespan Li-S coin and pouch cells: the importance of lithium metal anode protection, Energy Storage Mater, 6, 18, 10.1016/j.ensm.2016.09.003

Kong, 2019, Nonuniform redistribution of sulfur and lithium upon cycling: probing the origin of capacity fading in lithium–sulfur pouch cells, Energy Technol, 7, 1900111, 10.1002/ente.201900111

Gupta, 2019, Highly solvating electrolytes for lithium–sulfur batteries, Adv. Energy Mater., 9, 1803096, 10.1002/aenm.201803096

Cheng, 2016, Sparingly solvating electrolytes for high energy density lithium–sulfur batteries, ACS Energy Lett, 1, 503, 10.1021/acsenergylett.6b00194

Kong, 2021, Electrolyte solvation chemistry for lithium–sulfur batteries with electrolyte-lean conditions, J. Energy Chem., 55, 80, 10.1016/j.jechem.2020.06.054

Huang, 2019, Akin solid–solid biphasic conversion of a Li–S battery achieved by coordinated carbonate electrolytes, J. Mater. Chem. A, 7, 12498, 10.1039/C9TA02877C

Zheng, 2018, Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li-S batteries, Nano Energy, 50, 431, 10.1016/j.nanoen.2018.05.065

Cuisinier, 2014, Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries, Energy Environ. Sci., 7, 2697, 10.1039/C4EE00372A

Markevich, 2017, Review—on the mechanism of quasi-solid-state lithiation of sulfur encapsulated in microporous carbons: is the existence of small sulfur molecules necessary?, J. Electrochem. Soc., 164, A6244, 10.1149/2.0391701jes

Markevich, 2015, The effect of a solid electrolyte interphase on the mechanism of operation of lithium–sulfur batteries, J. Mater. Chem. A, 3, 19873, 10.1039/C5TA04613K

Salitra, 2014, High-performance lithium–sulfur batteries based on ionic-liquid electrolytes with bis(fluorolsufonyl)imide anions and sulfur-encapsulated highly disordered activated carbon, ChemElectroChem, 1, 1492, 10.1002/celc.201402126

Pang, 2018, Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries, Nat. Energy, 3, 783, 10.1038/s41560-018-0214-0

Markevich, 2015, Fluoroethylene carbonate as an important component in organic carbonate electrolyte solutions for lithium sulfur batteries, Electrochem. Commun., 60, 42, 10.1016/j.elecom.2015.08.004

Li, 2019, Solvent-mediated Li2S electrodeposition: a critical manipulator in lithium–sulfur batteries, Adv. Energy Mater., 9, 1802207, 10.1002/aenm.201802207

Shin, 2020, Recent progress in high donor electrolytes for lithium–sulfur batteries, Adv. Energy Mater., 10, 2001456, 10.1002/aenm.202001456

Shyamsunder, 2017, Inhibiting polysulfide shuttle in lithium–sulfur batteries through low-ion-pairing salts and a triflamide solvent, Angew. Chem. Int. Ed. Engl., 56, 6192, 10.1002/anie.201701026

Steudel, 2002, The chemistry of organic polysulfanes R-S(n)-R (n > 2), Chem. Rev., 102, 3905, 10.1021/cr010127m

Steudel, 1975, Properties of sulfur-sulfur bonds, Angew. Chem. Int. Ed. Engl., 14, 655, 10.1002/anie.197506551

Zhang, 2013, Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions, J. Power Sources, 231, 153, 10.1016/j.jpowsour.2012.12.102

Kamyshny, 2007, Equilibrium distribution of polysulfide ions in aqueous solutions at different temperatures by rapid single phase derivatization, Environ. Sci. Technol., 41, 2395, 10.1021/es062637+

Li, 2018, Revisiting the role of polysulfides in lithium–sulfur batteries, Adv. Mater., 30, e1705590, 10.1002/adma.201705590

Chernyak, 2006, Dielectric constant, dipole moment, and solubility parameters of some cyclic acid esters, J. Chem. Eng. Data, 51, 416, 10.1021/je050341y

Pan, 2015, On the way toward understanding solution chemistry of lithium polysulfides for high energy Li–S redox flow batteries, Adv. Energy Mater., 5, 1500113, 10.1002/aenm.201500113

Zhang, 2018, The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium–sulfur batteries, Angew. Chem. Int. Ed. Engl., 57, 16732, 10.1002/anie.201810132

Park, 2013, Ionic liquid electrolytes for lithium-sulfur batteries, J. Phys. Chem. C, 117, 20531, 10.1021/jp408037e

Park, 2013, Solvent effect of room temperature ionic liquids on electrochemical reactions in lithium-sulfur batteries, J. Phys. Chem. C, 117, 4431, 10.1021/jp400153m

Gao, 2017, A high performance lithium–sulfur battery enabled by a fish-scale porous carbon/sulfur composite and symmetric fluorinated diethoxyethane electrolyte, J. Mater. Chem. A, 5, 6725, 10.1039/C7TA01057E

Su, 2018, The relationship between the relative solvating power of electrolytes and shuttling effect of lithium polysulfides in lithium–sulfur batteries, Angew. Chem. Int. Ed. Engl., 57, 12033, 10.1002/anie.201807367

Su, 2019, Solvating power series of electrolyte solvents for lithium batteries, Energy Environ. Sci., 12, 1249, 10.1039/C9EE00141G

Chu, 2019, Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions, Nat. Commun., 10, 188, 10.1038/s41467-018-07975-4

Shin, 2013, Polysulfide dissolution control: the common ion effect, Chem. Commun. (Camb), 49, 2004, 10.1039/C2CC36986A

Suo, 2013, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries, Nat. Commun., 4, 1481, 10.1038/ncomms2513

Ueno, 2013, Anionic effects on solvate ionic liquid electrolytes in rechargeable lithium–sulfur batteries, J. Phys. Chem. C, 117, 20509, 10.1021/jp407158y

Zheng, 2015, Quantitative chromatographic determination of dissolved elemental sulfur in the non-aqueous electrolyte for lithium-sulfur batteries, J. Electrochem. Soc., 162, A203, 10.1149/2.1011501jes

Liu, 2020, Promoted rate and cycling capability of Li–S batteries enabled by targeted selection of co-solvent for the electrolyte, Energy Storage Mater, 25, 131, 10.1016/j.ensm.2019.10.022

Andrei, 2018, Theoretical and experimental analysis of precipitation and solubility effects in lithium-sulfur batteries, Electrochim. Acta, 284, 469, 10.1016/j.electacta.2018.07.045

Baek, 2020, New high donor electrolyte for lithium–sulfur batteries, Adv. Mater., 32, e2005022, 10.1002/adma.202005022

Chen, 2016, Restricting the solubility of polysulfides in Li-S batteries via electrolyte salt selection, Adv. Energy Mater., 6, 1600160, 10.1002/aenm.201600160

Dokko, 2013, Solvate ionic liquid electrolyte for Li–S batteries, J. Electrochem. Soc., 160, A1304, 10.1149/2.111308jes

Zhang, 2014, Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids, part 2: Importance of solvate-structure stability for electrolytes of lithium batteries, J. Phys. Chem. C, 118, 17362, 10.1021/jp504099q

Lee, 2017, Directing the lithium–sulfur reaction pathway via sparingly solvating electrolytes for high energy density batteries, ACS Cent. Sci., 3, 605, 10.1021/acscentsci.7b00123

Weller, 2017, Intrinsic shuttle suppression in lithium-sulfur batteries for pouch cell application, J. Electrochem. Soc., 164, A3766, 10.1149/2.0981714jes

Weller, 2019, Polysulfide shuttle suppression by electrolytes with low-density for high-energy lithium–sulfur batteries, Energy Technol, 7, 1900625, 10.1002/ente.201900625

Nakanishi, 2019, Sulfolane-based highly concentrated electrolytes of lithium bis(trifluoromethanesulfonyl)amide: ionic transport, Li-ion coordination, and Li–S battery performance, J. Phys. Chem. C, 123, 14229, 10.1021/acs.jpcc.9b02625

Cheng, 2019, Full dissolution of the whole lithium sulfide family (Li2S8 to Li2S) in a safe eutectic solvent for rechargeable lithium–sulfur batteries, Angew. Chem. Int. Ed. Engl., 58, 5557, 10.1002/anie.201812611

Pan, 2017, Ammonium additives to dissolve lithium sulfide through hydrogen binding for high-energy lithium–sulfur batteries, ACS Appl. Mater. Interfaces, 9, 4290, 10.1021/acsami.6b04158

Vijayakumar, 2014, Molecular structure and stability of dissolved lithium polysulfide species, Phys. Chem. Chem. Phys., 16, 10923, 10.1039/C4CP00889H

Rajput, 2017, Elucidating the solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions, Chem. Mater., 29, 3375, 10.1021/acs.chemmater.7b00068

Partovi-Azar, 2015, Evidence for the existence of Li2S2 clusters in lithium–sulfur batteries: ab initio Raman spectroscopy simulation, Phys. Chem. Chem. Phys., 17, 22009, 10.1039/C5CP02781K

Wang, 2013, A quantum-chemical study on the discharge reaction mechanism of lithium-sulfur batteries, J. Energy Chem., 22, 72, 10.1016/S2095-4956(13)60009-1

Xiong, 2014, Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries, J. Power Sources, 246, 840, 10.1016/j.jpowsour.2013.08.041

Xiong, 2012, Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries, Electrochim. Acta, 83, 78, 10.1016/j.electacta.2012.07.118

Conder, 2017, Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction, Nat. Energy, 2, 17069, 10.1038/nenergy.2017.69

Diao, 2012, Analysis of polysulfide dissolved in electrolyte in discharge-charge process of Li-S battery, J. Electrochem. Soc., 159, A421, 10.1149/2.060204jes

Harks, 2017, The significance of elemental sulfur dissolution in liquid electrolyte lithium sulfur batteries, Adv. Energy Mater., 7, 1601635, 10.1002/aenm.201601635

Xu, 2015, Progress in mechanistic understanding and characterization techniques of Li-S batteries, Adv. Energy Mater., 5, 1500408, 10.1002/aenm.201500408

Cuisinier, 2013, Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy, J. Phys. Chem. Lett., 4, 3227, 10.1021/jz401763d

Zheng, 2017, Investigation of the Li–S battery mechanism by real-time monitoring of the changes of sulfur and polysulfide species during the discharge and charge, ACS Appl. Mater. Interfaces, 9, 4326, 10.1021/acsami.6b08904

Waluś, 2015, Lithium/sulfur batteries upon cycling: structural modifications and species quantification by in situ and operando X-ray diffraction spectroscopy, Adv. Energy Mater., 5, 1500165, 10.1002/aenm.201500165

Wang, 2015, Direct observation of sulfur radicals as reaction media in lithium sulfur batteries, J. Electrochem. Soc., 162, A474, 10.1149/2.0851503jes

Nelson, 2012, In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries, J. Am. Chem. Soc., 134, 6337, 10.1021/ja2121926

Cañas, 2013, In-situ X-ray diffraction studies of lithium–sulfur batteries, J. Power Sources, 226, 313, 10.1016/j.jpowsour.2012.10.092

Waluś, 2013, New insight into the working mechanism of lithium–sulfur batteries: in situ and operando X-ray diffraction characterization, Chem. Commun. (Camb), 49, 7899, 10.1039/c3cc43766c

Cheon, 2003, Rechargeable lithium sulfur battery: I. Structural change of sulfur cathode during discharge and charge, J. Electrochem. Soc., 150, A796, 10.1149/1.1571532

Cheon, 2003, Rechargeable lithium sulfur battery: II. Rate capability and cycle characteristics, J. Electrochem. Soc., 150, A800, 10.1149/1.1571533

Elazari, 2010, Morphological and structural studies of composite sulfur electrodes upon cycling by HRTEM, AFM and Raman spectroscopy, J. Electrochem. Soc., 157, A1131, 10.1149/1.3479828

Yeon, 2012, Raman spectroscopic and X-ray diffraction studies of sulfur composite electrodes during discharge and charge, J. Electrochem. Soc., 159, A1308, 10.1149/2.080208jes

Wujcik, 2014, Fingerprinting lithium-sulfur battery reaction products by X-ray absorption spectroscopy, J. Electrochem. Soc., 161, A1100, 10.1149/2.078406jes

Gorlin, 2015, Operando characterization of intermediates produced in a lithium-sulfur battery, J. Electrochem. Soc., 162, A1146, 10.1149/2.0081507jes

Dominko, 2015, Analytical detection of polysulfides in the presence of adsorption additives by operando X-ray absorption spectroscopy, J. Phys. Chem. C, 119, 19001, 10.1021/acs.jpcc.5b05609

Zhao, 2019, Exploring reaction dynamics in lithium–sulfur batteries by time-resolved operando sulfur K-edge X-ray absorption spectroscopy, Chem. Commun. (Camb), 55, 4993, 10.1039/C9CC00485H

Cañas, 2014, Experimental and theoretical analysis of products and reaction intermediates of lithium–sulfur batteries, J. Phys. Chem. C, 118, 12106, 10.1021/jp5013208

Hagen, 2013, In-situ Raman investigation of polysulfide formation in Li-S Cells, J. Electrochem. Soc., 160, A1205, 10.1149/2.045308jes

Wu, 2015, In situ Raman spectroscopy of sulfur speciation in lithium–sulfur batteries, ACS Appl. Mater. Interfaces, 7, 1709, 10.1021/am5072942

Hannauer, 2015, The quest for polysulfides in lithium–sulfur battery electrolytes: an operando confocal Raman spectroscopy study, ChemPhysChem, 16, 2755, 10.1002/cphc.201500448

Zheng, 2015, Quantitative and qualitative determination of polysulfide species in the electrolyte of a lithium–sulfur battery using HPLC ESI/MS with one-step derivatization, Adv. Energy Mater., 5, 1401888, 10.1002/aenm.201401888

Kawase, 2014, Electrochemical reactions of lithium–sulfur batteries: an analytical study using the organic conversion technique, Phys. Chem. Chem. Phys., 16, 9344, 10.1039/C4CP00958D

Huff, 2015, Identification of lithium–sulfur battery discharge products through 6Li and 33S solid-state MAS and 7Li solution NMR spectroscopy, Surf. Sci., 631, 295, 10.1016/j.susc.2014.07.027

Xiao, 2015, Following the transient reactions in lithium–sulfur batteries using an in situ nuclear magnetic resonance technique, Nano Lett, 15, 3309, 10.1021/acs.nanolett.5b00521

Zhao, 2018, Advanced characterization techniques in promoting mechanism understanding for lithium–sulfur batteries, Adv. Funct. Mater., 28, 1707543, 10.1002/adfm.201707543

Tan, 2017, In situ/operando characterization techniques for rechargeable lithium–sulfur batteries: a review, Nanoscale, 9, 19001, 10.1039/C7NR06819K

Talaie, 2017, Methods and protocols for electrochemical energy storage materials research, Chem. Mater., 29, 90, 10.1021/acs.chemmater.6b02726

Yang, 2019, Critical role of anion donicity in Li2S deposition and sulfur utilization in Li–S batteries, ACS Appl. Mater. Interfaces, 11, 25940, 10.1021/acsami.9b07048

Yu, 2018, Direct visualization of sulfur cathodes: new insights into Li–S batteries via operando X-ray based methods, Energy Environ. Sci., 11, 202, 10.1039/C7EE02874A

Dominko, 2018, Polysulfides formation in different electrolytes from the perspective of X-ray absorption spectroscopy, J. Electrochem. Soc., 165, A5014, 10.1149/2.0151801jes

Fan, 2015, Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries, Adv. Mater., 27, 5203, 10.1002/adma.201501559

Paolella, 2016, Transient existence of crystalline lithium disulfide Li2S2 in a lithium-sulfur battery, J. Power Sources, 325, 641, 10.1016/j.jpowsour.2016.06.086

Barchasz, 2012, Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification, Anal. Chem., 84, 3973, 10.1021/ac2032244

Zheng, 2013, How to obtain reproducible results for lithium sulfur batteries?, J. Electrochem. Soc., 160, A2288, 10.1149/2.106311jes

Zhao, 2020, Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities, Angew. Chem. Int. Ed. Engl., 59, 12636, 10.1002/anie.201909339

Zhang, 2018, The synergetic interaction between LiNO3 and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries, Energy Storage Mater, 11, 24, 10.1016/j.ensm.2017.09.001

Markevich, 2020, Stabilizing lithium-sulfur cells with practical loading and cycling conditions using Li2S8-containing ethereal electrolyte solution, J. Electrochem. Soc., 167, 140536, 10.1149/1945-7111/abc6c9

Zhang, 2012, A new direction for the performance improvement of rechargeable lithium/sulfur batteries, J. Power Sources, 200, 77, 10.1016/j.jpowsour.2011.10.076

Rosenman, 2015, The Effect of interactions and reduction products of LiNO3, the anti-shuttle agent, in Li-S Battery Systems, J. Electrochem. Soc., 162, A470, 10.1149/2.0861503jes

Cheng, 2018, Review—Li metal anode in working lithium-sulfur batteries, J. Electrochem. Soc., 165, A6058, 10.1149/2.0111801jes

Yang, 2018, Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions, Angew. Chem. Int. Ed. Engl., 57, 15549, 10.1002/anie.201808311

Liu, 2020, High volumetric energy density sulfur cathode with heavy and catalytic metal oxide host for lithium-sulfur battery, Adv. Sci. (Weinh), 7, 1903693, 10.1002/advs.201903693

Zhao, 2020, Redox comediation with organopolysulfides in working lithium-sulfur batteries, Chem, 6, 3297, 10.1016/j.chempr.2020.09.015

Watanabe, 2017, Application of ionic liquids to energy storage and conversion materials and devices, Chem. Rev., 117, 7190, 10.1021/acs.chemrev.6b00504

Angell, 2012, Ionic liquids: past, present and future, Faraday Discuss, 154, 9, 10.1039/C1FD00112D

MacFarlane, 2014, Energy applications of ionic liquids, Energy Environ. Sci., 7, 232, 10.1039/C3EE42099J

Armand, 2009, Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater., 8, 621, 10.1038/nmat2448

Osada, 2016, Ionic-liquid-based polymer electrolytes for battery applications, Angew. Chem. Int. Ed. Engl., 55, 500, 10.1002/anie.201504971

Wang, 2020, Electrode material–ionic liquid coupling for electrochemical energy storage, Nat. Rev. Mater., 5, 787, 10.1038/s41578-020-0218-9

Giffin, 2016, Ionic liquid-based electrolytes for “beyond lithium” battery technologies, J. Mater. Chem. A, 4, 13378, 10.1039/C6TA05260F

Yuan, 2006, Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte, Electrochem. Commun., 8, 610, 10.1016/j.elecom.2006.02.007

Zhu, 2017, Investigation of the reaction mechanism of lithium sulfur batteries in different electrolyte systems by in situ Raman spectroscopy and in situ X-ray diffraction, Sustainable Energy Fuels, 1, 737, 10.1039/C6SE00104A

Barghamadi, 2015, Effect of anion on behaviour of Li-S battery electrolyte solutions based on N-methyl-N-butyl-pyrrolidinium ionic liquids, Electrochim. Acta, 180, 636, 10.1016/j.electacta.2015.08.132

Meisner, 2020, Impact of co-solvent and LiTFSI concentration on ionic liquid-based electrolytes for Li-S battery, J. Electrochem. Soc., 167, 070528, 10.1149/1945-7111/ab76a3

Mei, 2018, Synthesis of new fluorine-containing room temperature ionic liquids and their physical and electrochemical properties, J. Fluor. Chem., 212, 26, 10.1016/j.jfluchem.2018.05.008

Wang, 2008, Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries, Carbon, 46, 229, 10.1016/j.carbon.2007.11.007

Sun, 2012, Lithium–sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte, ChemSusChem, 5, 2079, 10.1002/cssc.201200101

Manan, 2011, Electrochemistry of sulfur and polysulfides in ionic liquids, J. Phys. Chem. B, 115, 13873, 10.1021/jp208159v

Seo, 2020, Direct visualization of lithium polysulfides and their suppression in liquid electrolyte, Nano Lett, 20, 2080, 10.1021/acs.nanolett.0c00058

Wang, 2016, To mitigate self-discharge of lithium–sulfur batteries by optimizing ionic liquid electrolytes, Energy Environ. Sci., 9, 224, 10.1039/C5EE02837J

Howlett, 2006, Characterization of the lithium surface in N-methyl-N-alkylpyrrolidinium bis(trifluoromethanesulfonyl) amide room-temperature ionic liquid electrolytes, J. Electrochem. Soc., 153, A595, 10.1149/1.2164726

Zheng, 2013, Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium–sulfur batteries, J. Mater. Chem. A, 1, 8464, 10.1039/c3ta11553d

Xiong, 2014, Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries, J. Power Sources, 252, 150, 10.1016/j.jpowsour.2013.11.119

Barghamadi, 2015, Effect of LiNO3 additive and pyrrolidinium ionic liquid on the solid electrolyte interphase in the lithium–sulfur battery, J. Power Sources, 295, 212, 10.1016/j.jpowsour.2015.06.150

Agostini, 2019, Designing a safe electrolyte enabling long-life Li/S batteries, ChemSusChem, 12, 4176, 10.1002/cssc.201901770

Song, 2013, A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance, Nano Lett, 13, 5891, 10.1021/nl402793z

Wang, 2013, N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide-based organic electrolyte for high performance lithium–sulfur batteries, J. Power Sources, 236, 207, 10.1016/j.jpowsour.2013.02.068

Wu, 2015, A safe electrolyte with counterbalance between the ionic liquid and tris(ethylene glycol)dimethyl ether for high performance lithium-sulfur batteries, Electrochim. Acta, 184, 356, 10.1016/j.electacta.2015.10.109

Wang, 2017, Reduced polysulfide shuttle effect by using polyimide separators with ionic liquid-based electrolytes in lithium-sulfur battery, Electrochim. Acta, 255, 109, 10.1016/j.electacta.2017.09.149

Hwa, 2018, Polymeric binders for the sulfur electrode compatible with ionic liquid containing electrolytes, Electrochim. Acta, 271, 103, 10.1016/j.electacta.2018.03.040

Lu, 2019, A rational balance design of hybrid electrolyte based on ionic liquid and fluorinated ether in lithium sulfur batteries, J. Electrochem. Soc., 166, A2453, 10.1149/2.0321912jes

Lu, 2019, The enhanced performance of lithium sulfur battery with ionic liquid-based electrolyte mixed with fluorinated ether, Ionics, 25, 2685, 10.1007/s11581-018-2814-x

Lu, 2020, A hybrid ionic liquid-based electrolyte for high-performance lithium–sulfur batteries, New J. Chem., 44, 361, 10.1039/C9NJ03790J

Mandai, 2014, Criteria for solvate ionic liquids, Phys. Chem. Chem. Phys., 16, 8761, 10.1039/c4cp00461b

Pappenfus, 2004, Complexes of lithium imide salts with tetraglyme and their polyelectrolyte composite materials, J. Electrochem. Soc., 151, A209, 10.1149/1.1635384

Tamura, 2010, Physicochemical properties of glyme–Li salt complexes as a new family of room-temperature ionic liquids, Chem. Lett., 39, 753, 10.1246/cl.2010.753

Yoshida, 2011, Oxidative-stability enhancement and charge transport mechanism in glyme–lithium salt equimolar complexes, J. Am. Chem. Soc., 133, 13121, 10.1021/ja203983r

Zhang, 2014, Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties, J. Phys. Chem. B, 118, 5144, 10.1021/jp501319e

Saito, 2016, Li+ local structure in hydrofluoroether diluted Li-glyme solvate ionic liquid, J. Phys. Chem. B, 120, 3378, 10.1021/acs.jpcb.5b12354

Saito, 2016, Li+ local structure in Li–tetraglyme solvate ionic liquid revealed by neutron total scattering experiments with the 6/7Li isotopic substitution technique, J. Phys. Chem. Lett., 7, 2832, 10.1021/acs.jpclett.6b01266

Callsen, 2017, The solvation structure of lithium ions in an ether based electrolyte solution from first-principles molecular dynamics, J. Phys. Chem. B, 121, 180, 10.1021/acs.jpcb.6b09203

Sun, 2018, Insight into the solvation structure of tetraglyme-based electrolytes via first-principles molecular dynamics simulation, J. Phys. Chem. B, 122, 10014, 10.1021/acs.jpcb.8b07098

Li, 2016, Promising cell configuration for next-generation energy storage: Li2S/graphite battery enabled by a solvate ionic liquid electrolyte, ACS Appl. Mater. Interfaces, 8, 16053, 10.1021/acsami.6b03736

Seki, 2017, Long-cycle-life lithium-sulfur batteries with lithium solvate ionic liquids, Electrochemistry, 85, 680, 10.5796/electrochemistry.85.680

Moon, 2015, Solvent activity in electrolyte solutions controls electrochemical reactions in Li-ion and Li-sulfur batteries, J. Phys. Chem. C, 119, 3957, 10.1021/jp5128578

Ueno, 2016, Li+ solvation and ionic transport in lithium solvate ionic liquids diluted by molecular solvents, J. Phys. Chem. C, 120, 15792, 10.1021/acs.jpcc.5b11642

Zhang, 2016, Optimization of pore structure of cathodic carbon supports for solvate ionic liquid electrolytes based lithium–sulfur batteries, ACS Appl. Mater. Interfaces, 8, 27803, 10.1021/acsami.6b09989

Lu, 2016, Solvate ionic liquid electrolyte with 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether as a support solvent for advanced lithium–sulfur batteries, RSC Adv, 6, 18186, 10.1039/C5RA24182K

Yamada, 2015, Review—superconcentrated electrolytes for lithium batteries, J. Electrochem. Soc., 162, A2406, 10.1149/2.0041514jes

Yamada, 2019, Advances and issues in developing salt-concentrated battery electrolytes, Nat. Energy, 4, 269, 10.1038/s41560-019-0336-z

Chen, 2018, High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes, Adv. Mater., 30, e1706102, 10.1002/adma.201706102

Mikhaylik, 2004, Polysulfide shuttle study in the Li/S battery system, J. Electrochem. Soc., 151, A1969, 10.1149/1.1806394

Lee, 2013, Sulfur-infiltrated micro- and mesoporous silicon carbide-derived carbon cathode for high-performance lithium sulfur batteries, Adv. Mater., 25, 4573, 10.1002/adma.201301579

Kim, 2015, In situ formation of protective coatings on sulfur cathodes in lithium batteries with LiFSI-based organic electrolytes, Adv. Energy Mater., 5, 1401792, 10.1002/aenm.201401792

Yamada, 2014, Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries, J. Am. Chem. Soc., 136, 5039, 10.1021/ja412807w

Shin, 2017, Effect of the hydrofluoroether cosolvent structure in acetonitrile-based solvate electrolytes on the Li+ solvation structure and Li–S battery performance, ACS Appl. Mater. Interfaces, 9, 39357, 10.1021/acsami.7b11566

Lau, 2019, Lipophilic additives for highly concentrated electrolytes in lithium-sulfur batteries, J. Electrochem. Soc., 166, A2570, 10.1149/2.0921912jes

See, 2016, Effect of hydrofluoroether cosolvent addition on Li solvation in acetonitrile-based solvate electrolytes and its influence on s reduction in a Li–S battery, ACS Appl. Mater. Interfaces, 8, 34360, 10.1021/acsami.6b11358

Seita, 2020, Graphite–lithium sulfide battery with a single-phase sparingly solvating electrolyte, ACS Energy Lett, 5, 1, 10.1021/acsenergylett.9b02347

Amine, 2020, Regulating the hidden solvation-ion-exchange in concentrated electrolytes for stable and safe lithium metal batteries, Adv. Energy Mater., 10, 2000901, 10.1002/aenm.202000901

Huang, 2018, Enhancing metallic lithium battery performance by tuning the electrolyte solution structure, J. Mater. Chem. A, 6, 1612, 10.1039/C7TA08274F

Yu, 2020, Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium–sulfur batteries, J. Energy Chem., 51, 154, 10.1016/j.jechem.2020.03.034

Shanmukaraj, 2018, High conductivity solvates with unsymmetrical glymes as new electrolytes, Chem. Mater., 30, 246, 10.1021/acs.chemmater.7b04270

Girard, 2017, Role of Li concentration and the SEI layer in enabling high performance Li metal electrodes using a phosphonium bis(fluorosulfonyl)imide ionic liquid, J. Phys. Chem. C, 121, 21087, 10.1021/acs.jpcc.7b01929

Yoon, 2015, Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes, Phys. Chem. Chem. Phys., 17, 4656, 10.1039/C4CP05333H

Ugata, 2020, Highly concentrated LiN(SO2CF3)2/dinitrile electrolytes: liquid structures, transport properties, and electrochemistry, J. Chem. Phys., 152, 104502, 10.1063/1.5145340

Chazalviel, 1990, Electrochemical aspects of the generation of ramified metallic electrodeposits, Phys. Rev. A, 42, 7355, 10.1103/PhysRevA.42.7355

Brissot, 1998, In situ study of dendritic growth inlithium/PEO-salt/lithium cells, Electrochim. Acta, 43, 1569, 10.1016/S0013-4686(97)10055-X

Bai, 2016, Transition of lithium growth mechanisms in liquid electrolytes, Energy Environ. Sci., 9, 3221, 10.1039/C6EE01674J

Cao, 2016, Effect of the anion activity on the stability of Li metal anodes in lithium-sulfur batteries, Adv. Funct. Mater., 26, 3059, 10.1002/adfm.201505074

Wang, 2020, Recent progress in fluorinated electrolytes for improving the performance of Li–S batteries, J. Energy Chem., 41, 149, 10.1016/j.jechem.2019.05.010

Weng, 2013, Ultrasound assisted design of sulfur/carbon cathodes with partially fluorinated ether electrolytes for highly efficient Li/S batteries, Adv. Mater., 25, 1608, 10.1002/adma.201204051

Su, 2019, A selection rule for hydrofluoroether electrolyte cosolvent: establishing a linear free-energy relationship in lithium–sulfur batteries, Angew. Chem. Int. Ed. Engl., 58, 10591, 10.1002/anie.201904240

Yue, 2018, Synthesis and electrochemical properties of partially fluorinated ether solvents for lithiumsulfur battery electrolytes, J. Power Sources, 401, 271, 10.1016/j.jpowsour.2018.08.097

Azimi, 2013, Improved performance of lithium–sulfur battery with fluorinated electrolyte, Electrochem. Commun., 37, 96, 10.1016/j.elecom.2013.10.020

Gordin, 2014, Bis(2,2,2-trifluoroethyl) ether as an electrolyte co-solvent for mitigating self-discharge in lithium–sulfur batteries, ACS Appl. Mater. Interfaces, 6, 8006, 10.1021/am501665s

Meisner, 2019, Lithium–sulfur battery with partially fluorinated ether electrolytes: interplay between capacity, coulombic efficiency and Li anode protection, J. Power Sources, 438, 226939, 10.1016/j.jpowsour.2019.226939

Chen, 2018, Enhanced electrochemical performance of high-energy lithium-sulfur batteries using an electrolyte with 1,1,2,2-tetrafluoro-3-(1,1,2,2-tetrafluoroethoxy)propane, J. Electrochem. Soc., 165, A1915, 10.1149/2.1531809jes

Drvarič Talian, 2017, Fluorinated ether based electrolyte for high-energy lithium–sulfur batteries: Li+ solvation role behind reduced polysulfide solubility, Chem. Mater., 29, 10037, 10.1021/acs.chemmater.7b03654

Schneider, 2014, On the electrode potentials in lithium-sulfur batteries and their solvent-dependence, J. Electrochem. Soc., 161, A1399, 10.1149/2.0991409jes

Zheng, 2019, High-fluorinated electrolytes for Li–S batteries, Adv. Energy Mater., 9, 1803774, 10.1002/aenm.201803774

Kensy, 2021, Impact of carbon porosity on sulfur conversion in Li−S battery cathodes in a sparingly polysulfide solvating electrolyte, Batteries & Supercaps, 4, 823, 10.1002/batt.202000286

Shin, 2020, Fluorinated co-solvent promises Li-S batteries under lean-electrolyte conditions, Mater. Today, 40, 63, 10.1016/j.mattod.2020.06.007

Azimi, 2015, Understanding the effect of a fluorinated ether on the performance of lithium–sulfur batteries, ACS Appl. Mater. Interfaces, 7, 9169, 10.1021/acsami.5b01412

Lu, 2015, Lithium/sulfur batteries with mixed liquid electrolytes based on ethyl 1,1,2,2-tetrafluoroethyl ether, Electrochim. Acta, 161, 55, 10.1016/j.electacta.2015.02.031

Zu, 2015, Insight into lithium–metal anodes in lithium–sulfur batteries with a fluorinated ether electrolyte, J. Mater. Chem. A, 3, 14864, 10.1039/C5TA03195H

Tsao, 2019, Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries, Joule, 3, 872, 10.1016/j.joule.2018.12.018

Chu, 2020, Unraveling the dual functionality of high-donor-number anion in lean-electrolyte lithium-sulfur batteries, Adv. Energy Mater., 10, 2000493, 10.1002/aenm.202000493

He, 2018, Unraveling the correlation between solvent properties and sulfur redox behavior in lithium-sulfur batteries, J. Electrochem. Soc., 165, A4027, 10.1149/2.0991816jes

Lin, 2013, Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries, Adv. Funct. Mater., 23, 1064, 10.1002/adfm.201200696

Cuisinier, 2015, Radical or not radical: revisiting lithium–sulfur electrochemistry in nonaqueous electrolytes, Adv. Energy Mater., 5, 1401801, 10.1002/aenm.201401801

Zou, 2016, Solvent-dictated lithium sulfur redox reactions: an operando UV–vis spectroscopic study, J. Phys. Chem. Lett., 7, 1518, 10.1021/acs.jpclett.6b00228

Lu, 2014, Probing the lithium–sulfur redox reactions: a rotating-ring disk electrode study, J. Phys. Chem. C, 118, 5733, 10.1021/jp500382s

Pan, 2017, Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth, Nat. Energy, 2, 813, 10.1038/s41560-017-0005-z

Liu, 2017, Stabilization of Li metal anode in DMSO-based electrolytes via optimization of salt–solvent coordination for Li–O2 batteries, Adv. Energy Mater., 7, 1602605, 10.1002/aenm.201602605

Walker, 2013, A rechargeable Li–O2 battery using a lithium nitrate/n,n-dimethylacetamide electrolyte, J. Am. Chem. Soc., 135, 2076, 10.1021/ja311518s

Peng, 2020, A fundamental look at electrocatalytic sulfur reduction reaction, Nat. Catal., 3, 762, 10.1038/s41929-020-0498-x

Pang, 2019, Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium-sulfur batteries, Joule, 3, 136, 10.1016/j.joule.2018.09.024

Gu, 2016, Suppressing the dissolution of polysulfides with cosolvent fluorinated diether towards high-performance lithium sulfur batteries, Phys. Chem. Chem. Phys., 18, 29293, 10.1039/C6CP04775K

Tang, 2020, Highly safe electrolyte enabled via controllable polysulfide release and efficient conversion for advanced lithium–sulfur batteries, Small, 16, e1905737, 10.1002/smll.201905737

Chen, 2018, Designing safe electrolyte systems for a high-stability lithium–sulfur battery, Adv. Energy Mater., 8, 1702348, 10.1002/aenm.201702348

Arbizzani, 2011, Thermal stability and flammability of electrolytes for lithium-ion batteries, J. Power Sources, 196, 4801, 10.1016/j.jpowsour.2011.01.068

Yang, 2014, Pyrrolidinium-based ionic liquid electrolyte with organic additive and LiTFSI for high-safety lithium-ion batteries, Electrochim. Acta, 148, 39, 10.1016/j.electacta.2014.10.001

Fan, 2018, Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries, Nat. Nanotechnol., 13, 715, 10.1038/s41565-018-0183-2

Zeng, 2018, Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries, Nat. Energy, 3, 674, 10.1038/s41560-018-0196-y