Electrodeposition of titanium from chloride melts
Tóm tắt
The kinetics of the electrodeposition and electrocrystallisation of titanium were studied in alkali chloride melts. Voltammograms showed two distinct anodic peaks for the oxidation steps Ti/Ti(II) and Ti(II)/Ti(III) at 70 mV and 300 mV, respectively, referred to titanium. The cathodic reduction Ti(III)/Ti(II) was very irreversible, showing an extended cathodic wave and a shoulder on the Ti(II)/Ti reduction peak. The Ti(II)/Ti reduction was found to be quasi reversible. The rate constant at 450'C was ∼ 5 × 10−3 cm s−1 . The diffusion coefficient in KCl-LiCl eutectic was ∼ 1 × 10−5 cm2s−1 at 450° C rising to 3.5 × 10−5 cm2s−1 at 650° C. Potential step measurements gave curves indicating slow instantaneous nucleation and growth (I against t
1/2) followed by slow diffusion control (I against t
−1/2). During constant current steady state deposition the nature of the deposit depended on the composition of the melt, the temperature and the cd. In KCl-LiCl melts coherent deposits were obtained for cds of 60–120 mA cm2 while higher current densities gave dendritic and spongy deposits.
Tài liệu tham khảo
E. Huppertz, Electrochem. Met. Ind. 3 (1905) 35.
J. Burgess, G. T. Brown and C. W. Roberts, J. Appl. Chem. 8 (1958) 6.
M.V. Ginatta, ‘Industrial Plant for the Production of Electrolytic Titanium’. Paper presented at The 6th World Conference on Titanium, Cannes, 6–9 June 1988.
C. A. C. Sequeira, J. Electroanal. Chem. 239 (1988) 203.
H. Wendt, K. Reuhl and V. Schwarz, Electrochimica Acta 37 (1992) 237.
E. Chassaing, F. Basile, G. Lorthoir, J. Appl. Electrochem. 11 (1981) 187.
B. G. Rossokhin, M. V. Smirnov and N. A. Loginov, Electrochem. Molten and Solid Electrolytes 4 (1967) 11.
R. L. Baboian, D. L. Hill and R. A. Bailey, Can. J. Chem. 43 (1965) 197.
B. N. Popov, M. C. Kimble, R. E. White and H. Wendt, J. Appl. Electrochem. 21 (1991) 351.
S. N.Flengas, Department of Mines and Technical Surveys, Ottava, Canada, Ann. N. Y. Acad. Sci. 79, art. 11, (30 Jan. 1960), p. 853.
M. J. Rand and L. J. Reimert, J. Electrochem. Soc. 111, (1964) 429.
F. Quemper, D. Deroo and M. Rigand, ibid. 119 (1972) 1353.
M. Nardin, E. Chassaing and G. Lorthoir, International Meeting on Molten Salt Electrolysis in Metal Production. The Institute of Mining and Metallurgy, Grenoble, France (Sept. 1977) p. 35.
V. S. Baliklin and S. B. Makarov, Russian Metallurgy (Metally) 6 (1983) 40.
D. M. Ferry, G. S. Picard and B. L. Tremillon, Proceedings of the Joint International Symposium on Molten Salts. The Electrochemical Society, Honolulu (1987) p. 517.
M. V. Ginatta, ‘Method of Producing Metals by Cathodic Dissolution of Their Compounds’. U.S. Patent 4 400 247 (23 Aug, 1983)
I. A. Filippova and A. I. Baraboshkin, Tr. In-ta electrokhimii UNITS An SSSR, Sverdlovsk 27 (1978) 25.
S. Vire, ‘Electrochemical Studies of Titanium in Molten Chlorides and Fluorides’, Ph.D. thesis, Imperial College, London (1981).
B. Popov, J. B. Wagner Jr. and Z. Koneska, Croatica Chemica Acta (1989).
G. Gunawardena, G. Hills, I. Montenegro, B. Scharifker, J. Electroanal. Chem. 138 (1982) 225.
T. Vargas and D. Inman, J. Appl. Electrochem. 17 (1987) 270.
G. D. P. Cordner and H. W. Worner, Austral. J. Appl. Sci. 2 (1951) 358.
T. Oki, M. Okido and C. Guang-sen, Proceedings of the Joint International Symposium on Molten Salts, Honolulu, HI, Vol. 7, p. 507, The Electrochemical Society, Pennington, NJ (1987) p. 507.
C. N. Gopienko and V. V. Timofeev, J. Appl. Chem. USSR 40 (1967) 1545.
J. H. Mui and S. N. Flengas, Can. J. Chem. 40 (1962) 997.
J. Greenberg and B. R. Sundheim, J. Chem. Phys. 29 (1958) 1029.