Electrodeposition of cobalt nanowires into alumina templates generated by one-step anodization
Tài liệu tham khảo
Zhan, 2015, Binder-free Co–CoO x nanowire arrays for lithium ion batteries with excellent rate capability and ultra-long cycle life, J. Mater. Chem. A, 3, 19711, 10.1039/C5TA02987B
Li, 2005, Co3O4 nanomaterials in lithium-ion batteries and gas sensors, Adv. Funct. Mater., 15, 851, 10.1002/adfm.200400429
Liu, 2008, Cobalt nanowires prepared by heterogeneous nucleation in propanediol and their catalytic properties, Nanotechnology, 19, 10.1088/0957-4484/19/36/365608
Roduner, 2006, Size matters: why nanomaterials are different, Chem. Soc. Rev., 35, 583, 10.1039/b502142c
Knez, 2003, Biotemplate synthesis of 3-nm nickel and cobalt nanowires, Nano Lett., 3, 1079, 10.1021/nl0342545
Sánchez-Barriga, 2009, Interplay between the magnetic anisotropy contributions of cobalt nanowires, Phys. Rev. B, 80, 10.1103/PhysRevB.80.184424
Proenca, 2013, Co nanostructures in ordered templates: comparative FORC analysis, Nanotechnology, 24, 10.1088/0957-4484/24/47/475703
Sousa, 2014, Nanoporous alumina as templates for multifunctional applications, Appl. Phys. Rev., 1, 10.1063/1.4893546
Masuda, 1997, Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, J. Electrochem. Soc., 144, L127, 10.1149/1.1837634
Masuda, 1998, Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution, Jpn. J. Appl. Phys., 37, L1340, 10.1143/JJAP.37.L1340
Stępniowski, 2014, Fast Fourier transform based arrangement analysis of poorly organized alumina nanopores formed via self-organized anodization in chromic acid, Mater. Lett., 117, 69, 10.1016/j.matlet.2013.11.099
Kikuchi, 2014, Self-ordering behavior of anodic porous alumina via selenic acid anodizing, Electrochim. Acta, 137, 728, 10.1016/j.electacta.2014.06.078
Ono, 2005, Self-ordering of anodic porous alumina formed in organic acid electrolytes, Electrochim. Acta, 51, 827, 10.1016/j.electacta.2005.05.058
García, 1999, Magnetic behavior of an array of cobalt nanowires, J. Appl. Phys., 85, 5480, 10.1063/1.369868
Chaure, 2005, Oriented cobalt nanowires prepared by electrodeposition in a porous membrane, J. Magn. Magn. Mater., 290–291, 1210, 10.1016/j.jmmm.2004.11.387
Proenca, 2012, Ni growth inside ordered arrays of alumina nanopores: enhancing the deposition rate, Electrochim. Acta, 72, 215, 10.1016/j.electacta.2012.04.036
Proenca, 2013, Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays, J. Appl. Phys., 113, 10.1063/1.4794335
Nielsch, 2000, Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition, Adv. Mater., 12, 582, 10.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-3
Cheng, 2007, Tree-like alumina nanopores generated in a non-steady-state anodization, J. Mater. Chem., 17, 3493, 10.1039/b709618f
Cheng, 2015, Fabrication of single phase p-CuInSe2 nanowire arrays by electrodeposited into anodic alumina templates, Appl. Phys. Lett., 107, 10.1063/1.4934662
Salem, 2012, Magnetic characterization of nickel-rich NiFe nanowires grown by pulsed electrodeposition, J. Mater. Chem., 22, 8549, 10.1039/c2jm16339j
Gomez, 2012, Growth and characterization of ZnO nanowire arrays electrodeposited into anodic alumina templates in DMSO solution, J. Solid State Electrochem., 16, 197, 10.1007/s10008-011-1309-8
Arefpour, 2016, Electrochemical pore filling strategy for controlled growth of magnetic and metallic nanowire arrays with large area uniformity, Nanotechnology, 27, 10.1088/0957-4484/27/27/275605
Xue, 2012, Dual-template synthesis of Co(OH) 2 with mesoporous nanowire structure and its application in supercapacitor, J. Power Sources, 201, 382, 10.1016/j.jpowsour.2011.10.138
Ramazani, 2012, Crystallinity and magnetic properties of electrodeposited Co nanowires in porous alumina, J. Magn. Magn. Mater., 324, 1826, 10.1016/j.jmmm.2012.01.009
Ren, 2009, The effect of structure on magnetic properties of Co nanowire arrays, J. Magn. Magn. Mater., 321, 226, 10.1016/j.jmmm.2008.08.111
Tzaneva, 2016, Cobalt electrodeposition in nanoporous anodic aluminium oxide for application as catalyst for methane combustion, Electrochim. Acta, 191, 192, 10.1016/j.electacta.2016.01.063
Sousa, 2011, Tunning pore filling of anodic alumina templates by accurate control of the bottom barrier layer thickness, Nanotechnology, 22, 10.1088/0957-4484/22/31/315602
Nielsch, 2002, Self-ordering regimes of porous alumina: the 10 porosity rule, Nano Lett., 2, 677, 10.1021/nl025537k
Wolff, 2001, Spatiotemporal addressing of surface activity, Science, 294, 134, 10.1126/science.1063597
Altimari, 2012, Temperature wave-trains of periodically forced networks of catalytic reactors, AIChE J., 58, 899, 10.1002/aic.12601
Pagnanelli, 2015, Pulsed electrodeposition of cobalt nanoparticles on copper: influence of the operating parameters on size distribution and morphology, Electrochim. Acta, 155, 228, 10.1016/j.electacta.2014.12.112
Schiavi, 2016, Morphology-controlled synthesis of cobalt nanostructures by facile electrodeposition: transition from hexagonal nanoplatelets to nanoflakes, Electrochim. Acta, 220, 405, 10.1016/j.electacta.2016.10.117
Azevedo, 2014, Ultra-long Fe nanowires by pulsed electrodeposition with full filling of alumina templates, Mater. Res. Express, 1, 10.1088/2053-1591/1/1/015028
Yuzhakov, 1997, Pattern formation during electropolishing, Phys. Rev. B, 56, 12608, 10.1103/PhysRevB.56.12608
Bandyopadhyay, 1996, Electrochemically assembled quasi-periodic quantum dot arrays, Nanotechnology, 7, 360, 10.1088/0957-4484/7/4/010
Yuzhakov, 1999, Pattern selection during electropolishing due to double-layer effects, Chaos Interdiscip. J. Nonlinear Sci., 9, 62, 10.1063/1.166380
Sulka, 2002, Synthesis of well-ordered nanopores by anodizing aluminum foils in sulfuric acid, J. Electrochem. Soc., 149, D97, 10.1149/1.1481527
Lukacs, 1997, The numerical evaluation of the distortion of EIS data due to the distribution of parameters, J. Electroanal. Chem., 432, 79, 10.1016/S0022-0728(97)00217-9
Hitzig, 1984, AC-impedance measurements on porous aluminium oxide films, Corros. Sci., 24, 945, 10.1016/0010-938X(84)90115-X
Sulka, 2007, Electrochemical impedance spectroscopic study of barrier layer thinning in nanostructured aluminium, J. Appl. Electrochem., 37, 789, 10.1007/s10800-007-9312-6
Hirschorn, 2010, Determination of effective capacitance and film thickness from constant-phase-element parameters, Electrochim. Acta, 55, 6218, 10.1016/j.electacta.2009.10.065
Milchev, 2002
Schiavi, 2015
Shaban, 2010, Uniform and reproducible barrier layer removal of porous anodic alumina membrane, J. Nanosci. Nanotechnol., 10, 3380, 10.1166/jnn.2010.2259
Winkler, 2012, Large-scale highly ordered arrays of freestanding magnetic nanowires, J. Mater. Chem., 22, 16627, 10.1039/c2jm33224h
Gloos, 2003, Properties of native ultrathin aluminium oxide tunnel barriers, J. Phys. Condens. Matter, 15, 1733, 10.1088/0953-8984/15/10/320
Nenov, 2016, Effect of anodization conditions on the breakdown voltage of nanoporous aluminium oxide, 1
Fan, 1996, Study of anomalous nickel-cobalt electrodeposition with different electrolytes and current densities, Electrochim. Acta, 41, 1713, 10.1016/0013-4686(95)00488-2