Electrodeposition of cobalt nanowires into alumina templates generated by one-step anodization

Electrochimica Acta - Tập 259 - Trang 711-722 - 2018
Pier Giorgio Schiavi1, Pietro Altimari1, Antonio Rubino1, Francesca Pagnanelli1
1Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy

Tài liệu tham khảo

Zhan, 2015, Binder-free Co–CoO x nanowire arrays for lithium ion batteries with excellent rate capability and ultra-long cycle life, J. Mater. Chem. A, 3, 19711, 10.1039/C5TA02987B Li, 2005, Co3O4 nanomaterials in lithium-ion batteries and gas sensors, Adv. Funct. Mater., 15, 851, 10.1002/adfm.200400429 Liu, 2008, Cobalt nanowires prepared by heterogeneous nucleation in propanediol and their catalytic properties, Nanotechnology, 19, 10.1088/0957-4484/19/36/365608 Roduner, 2006, Size matters: why nanomaterials are different, Chem. Soc. Rev., 35, 583, 10.1039/b502142c Knez, 2003, Biotemplate synthesis of 3-nm nickel and cobalt nanowires, Nano Lett., 3, 1079, 10.1021/nl0342545 Sánchez-Barriga, 2009, Interplay between the magnetic anisotropy contributions of cobalt nanowires, Phys. Rev. B, 80, 10.1103/PhysRevB.80.184424 Proenca, 2013, Co nanostructures in ordered templates: comparative FORC analysis, Nanotechnology, 24, 10.1088/0957-4484/24/47/475703 Sousa, 2014, Nanoporous alumina as templates for multifunctional applications, Appl. Phys. Rev., 1, 10.1063/1.4893546 Masuda, 1997, Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, J. Electrochem. Soc., 144, L127, 10.1149/1.1837634 Masuda, 1998, Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution, Jpn. J. Appl. Phys., 37, L1340, 10.1143/JJAP.37.L1340 Stępniowski, 2014, Fast Fourier transform based arrangement analysis of poorly organized alumina nanopores formed via self-organized anodization in chromic acid, Mater. Lett., 117, 69, 10.1016/j.matlet.2013.11.099 Kikuchi, 2014, Self-ordering behavior of anodic porous alumina via selenic acid anodizing, Electrochim. Acta, 137, 728, 10.1016/j.electacta.2014.06.078 Ono, 2005, Self-ordering of anodic porous alumina formed in organic acid electrolytes, Electrochim. Acta, 51, 827, 10.1016/j.electacta.2005.05.058 García, 1999, Magnetic behavior of an array of cobalt nanowires, J. Appl. Phys., 85, 5480, 10.1063/1.369868 Chaure, 2005, Oriented cobalt nanowires prepared by electrodeposition in a porous membrane, J. Magn. Magn. Mater., 290–291, 1210, 10.1016/j.jmmm.2004.11.387 Proenca, 2012, Ni growth inside ordered arrays of alumina nanopores: enhancing the deposition rate, Electrochim. Acta, 72, 215, 10.1016/j.electacta.2012.04.036 Proenca, 2013, Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays, J. Appl. Phys., 113, 10.1063/1.4794335 Nielsch, 2000, Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition, Adv. Mater., 12, 582, 10.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-3 Cheng, 2007, Tree-like alumina nanopores generated in a non-steady-state anodization, J. Mater. Chem., 17, 3493, 10.1039/b709618f Cheng, 2015, Fabrication of single phase p-CuInSe2 nanowire arrays by electrodeposited into anodic alumina templates, Appl. Phys. Lett., 107, 10.1063/1.4934662 Salem, 2012, Magnetic characterization of nickel-rich NiFe nanowires grown by pulsed electrodeposition, J. Mater. Chem., 22, 8549, 10.1039/c2jm16339j Gomez, 2012, Growth and characterization of ZnO nanowire arrays electrodeposited into anodic alumina templates in DMSO solution, J. Solid State Electrochem., 16, 197, 10.1007/s10008-011-1309-8 Arefpour, 2016, Electrochemical pore filling strategy for controlled growth of magnetic and metallic nanowire arrays with large area uniformity, Nanotechnology, 27, 10.1088/0957-4484/27/27/275605 Xue, 2012, Dual-template synthesis of Co(OH) 2 with mesoporous nanowire structure and its application in supercapacitor, J. Power Sources, 201, 382, 10.1016/j.jpowsour.2011.10.138 Ramazani, 2012, Crystallinity and magnetic properties of electrodeposited Co nanowires in porous alumina, J. Magn. Magn. Mater., 324, 1826, 10.1016/j.jmmm.2012.01.009 Ren, 2009, The effect of structure on magnetic properties of Co nanowire arrays, J. Magn. Magn. Mater., 321, 226, 10.1016/j.jmmm.2008.08.111 Tzaneva, 2016, Cobalt electrodeposition in nanoporous anodic aluminium oxide for application as catalyst for methane combustion, Electrochim. Acta, 191, 192, 10.1016/j.electacta.2016.01.063 Sousa, 2011, Tunning pore filling of anodic alumina templates by accurate control of the bottom barrier layer thickness, Nanotechnology, 22, 10.1088/0957-4484/22/31/315602 Nielsch, 2002, Self-ordering regimes of porous alumina: the 10 porosity rule, Nano Lett., 2, 677, 10.1021/nl025537k Wolff, 2001, Spatiotemporal addressing of surface activity, Science, 294, 134, 10.1126/science.1063597 Altimari, 2012, Temperature wave-trains of periodically forced networks of catalytic reactors, AIChE J., 58, 899, 10.1002/aic.12601 Pagnanelli, 2015, Pulsed electrodeposition of cobalt nanoparticles on copper: influence of the operating parameters on size distribution and morphology, Electrochim. Acta, 155, 228, 10.1016/j.electacta.2014.12.112 Schiavi, 2016, Morphology-controlled synthesis of cobalt nanostructures by facile electrodeposition: transition from hexagonal nanoplatelets to nanoflakes, Electrochim. Acta, 220, 405, 10.1016/j.electacta.2016.10.117 Azevedo, 2014, Ultra-long Fe nanowires by pulsed electrodeposition with full filling of alumina templates, Mater. Res. Express, 1, 10.1088/2053-1591/1/1/015028 Yuzhakov, 1997, Pattern formation during electropolishing, Phys. Rev. B, 56, 12608, 10.1103/PhysRevB.56.12608 Bandyopadhyay, 1996, Electrochemically assembled quasi-periodic quantum dot arrays, Nanotechnology, 7, 360, 10.1088/0957-4484/7/4/010 Yuzhakov, 1999, Pattern selection during electropolishing due to double-layer effects, Chaos Interdiscip. J. Nonlinear Sci., 9, 62, 10.1063/1.166380 Sulka, 2002, Synthesis of well-ordered nanopores by anodizing aluminum foils in sulfuric acid, J. Electrochem. Soc., 149, D97, 10.1149/1.1481527 Lukacs, 1997, The numerical evaluation of the distortion of EIS data due to the distribution of parameters, J. Electroanal. Chem., 432, 79, 10.1016/S0022-0728(97)00217-9 Hitzig, 1984, AC-impedance measurements on porous aluminium oxide films, Corros. Sci., 24, 945, 10.1016/0010-938X(84)90115-X Sulka, 2007, Electrochemical impedance spectroscopic study of barrier layer thinning in nanostructured aluminium, J. Appl. Electrochem., 37, 789, 10.1007/s10800-007-9312-6 Hirschorn, 2010, Determination of effective capacitance and film thickness from constant-phase-element parameters, Electrochim. Acta, 55, 6218, 10.1016/j.electacta.2009.10.065 Milchev, 2002 Schiavi, 2015 Shaban, 2010, Uniform and reproducible barrier layer removal of porous anodic alumina membrane, J. Nanosci. Nanotechnol., 10, 3380, 10.1166/jnn.2010.2259 Winkler, 2012, Large-scale highly ordered arrays of freestanding magnetic nanowires, J. Mater. Chem., 22, 16627, 10.1039/c2jm33224h Gloos, 2003, Properties of native ultrathin aluminium oxide tunnel barriers, J. Phys. Condens. Matter, 15, 1733, 10.1088/0953-8984/15/10/320 Nenov, 2016, Effect of anodization conditions on the breakdown voltage of nanoporous aluminium oxide, 1 Fan, 1996, Study of anomalous nickel-cobalt electrodeposition with different electrolytes and current densities, Electrochim. Acta, 41, 1713, 10.1016/0013-4686(95)00488-2