Electrodeposition behavior of zinc–nickel–iron alloys from sulfate bath
Tóm tắt
The present work is directed at collecting the properties of Zn–Ni and Zn–Fe alloys in one alloy via the electrodeposition of Zn–Ni–Fe ternary alloy. Electrodeposition of ternary Zn–Ni–Fe alloy was investigated and compared with the characteristics of Zn–Ni electrodeposits. The electrodeposition was performed from a sulfate bath onto a steel substrate. Structural analysis by X-ray diffraction (XRD) method revealed that the Zn–Ni–Fe alloys consisted of a mixture of zinc, and (γ-Ni2Zn11) and (Fe3Ni2) phases. The study was carried out using electrochemical methods such as cyclic voltammetry and galvanostatic for electrodeposition, while anodic linear polarization resistance and anodic linear sweeping voltammetry techniques were used for the corrosion study. Surface morphology and chemical composition of the deposits were also examined by using scanning electron microscopy and atomic absorption spectroscopy, respectively. It was found that the obtained Zn–Ni–Fe alloy exhibited more preferred surface appearance and better corrosion resistance without adding any organic brighteners to the plating bath in comparison to Zn–Ni alloy that electrodeposited at similar conditions. Results obtained revealed that the increase in corrosion resistance of ternary deposits is not only attributed to the formation of (γ-Ni2Zn11) phase, but also to iron codeposition and formation of (Fe3Ni2) phase.
Tài liệu tham khảo
C Muller, M Sarret and M Benballa, Some Peculiarities in the Codeposition of Zinc–Nickel Alloys. Electrochim. Acta, 46 (18) (2001) 2811. doi:10.1016/S0013-4686(01)00493-5
JB Bajat, Z Kacarevic-Popovic, VB Miskovic-Stankovic and MD Maksimovic, Corrosion Behaviour of Epoxy Coatings Electrodeposited on Galvanized Steel and Steel Modified by Zn–Ni Alloys. Prog. Org. Coat., 39 (2) (2000) 127–135. doi:10.1016/S0300-9440(00)00127-2
R Ramanauskas, L Muleshkova, L Maldonado and P Dobrovolskis, Characterization of the Corrosion Behavior of Zn and Zn Alloy Electrodeposits: Atmospheric and Accelerated Tests. Corros. Sci., 40 (1998) 401–410. doi:10.1016/S0010-938X(97)00144-3
R Fratesi and G Roventi, Corrosion Resistance of Zn-Ni Alloy Coatings in Industrial Production. Surf. Coat. Technol., 82 (1–2) (1996) 158–164. doi:10.1016/0257-8972(95)02668-1
Z Zhou and T OKeefe, Modification of Anomalous Deposition of Zn–Ni Alloy by Using Tin Additions. Surf. Coat. Technol., 96 (2–3)(1997) 191–197. doi:10.1016/S0257-8972(97)00111-4
MR Kalantary, GD Wilcox and DR Gabe, The Production of Compositionally Modulated Alloys by Simulated High Speed Electrodeposition from a Single Solution. Electrochim. Acta., 40(11) (1995) 1609–1616. doi:10.1016/0013-4686(95)00085-S
R Ramanauskas, Structural Factor in Zn Alloy Electrodeposit Corrosion. Appl. Surf. Sci., 153 (1) (1999) 53–64. doi:10.1016/S0169-4332(99)00334-7
Z Wu, L Fedrizzi and PL Bonora, Electrochemical Studies of Zinc-Nickel Codeposition in Chloride Baths. Surf. Coat. Technol., 85(3) (1996) 170–174. doi:10.1016/0257-8972(96)02857-5
C Müller, M Sarret and M Benballa, Complexing Agents for a Zn–Ni Alkaline Bath. J. Electroanal. Chem., 519 (1–2) 85–92 (2002)
M Benballa, L Nils, M Sarret and C Müller, Zinc–Nickel Codeposition in Ammonium Baths. Surf. Coat. Technol., 123 (1) 55–61 (2000)
IH Karahan, Electrodeposition and Properties of ZnFeNi Alloys. Chin. J. Phy., 46 (1) 105–112 (2008)
MM Younan and T Oki, Electrodeposition of Zn−Ni−Fe Alloy in Acidic Chloride Bath with Separated Anodes. J. Appl. Electrochem., 26(5) (1996) 537–541. doi:10.1007/BF01021978
MV Ananth and NV Parthasaradhy, Hydrogen Evolution Characteristics of Electrodeposited Ni-Zn-Fe Coatings in Alkaline Solutions. Int. J. Hydrogen Energy, 22(8) (1997) 747–751. doi:10.1016/S0360-3199(96)00206-6
Brenner, A, Electrodeposition of Alloys, Vol. 2, p. 194. Academic Press, New York (1963)
H. Dahms and IM Croll, The Anomalous Codeposition of Nickel-Iron Alloys. J. Electrochem. Soc., 112(8) (1965) 771–775. doi:10.1149/1.2423692
M Yunus, C Capel-Boute and C Decroly, Inhibition Effect of Zinc on the Cathodic Deposition of Cobalt—I. Electrochemical and Structural Observations in Sulphate Solutions Electrochim. Acta, 10 (9) (1965) 885. doi:10.1016/0013-4686(65)80001-9
J Mindowicz, C Capel-Boute and C Decroly, Inhibition Effect of Zinc on the Cathodic Deposition of Cobalt—II. Potentiodynamic and Intensiodynamic Curves in Chloride Solutions. Electrochim. Acta., 10(9) (1965) 901–904. doi:10.1016/0013-4686(65)80002-0
CJ Lana, WY Liua, ST Kea and TS Chin, Potassium Salt Based Alkaline Bath for Deposition of Zn–Fe Alloys. Surf. Coat. Technol., 201 (6) 3103–3108 (2006)
MG Hosseini, H Ashassi-Sorkhabi and HAY Ghiasvand, Electrochemical Studies of Zn–Ni Alloy Coatings from Non-Cyanide Alkaline Bath Containing Tartrate as Complexing Agent. Surf. Coat. Technol., 202 (13) 2897–2904 (2008)
T Akiyama and H Fukushima, Recent Study on the Mechanism of the Electrodeposition of Iron-Group Metal Alloys. J. ISIJ Int., 32 (7)(1992) 787–798. doi:10.2355/isijinternational.32.787
H Fukushima, T Akiyama, M Yano, T Ishikawa and R Kammel, Electrodeposition Behavior of Zn-Iron-group Metal Alloys from Sulfate and Chloride Baths. J ISIJ Int., 33(9) (1993) 1009–1015. doi:10.2355/isijinternational.33.1009
T Tsuru, S Kobayashi, T Akiyama, H Fukushima, SK Gogia and R Kammel, Electrodeposition Behaviour of Zinc-Iron Group Metal Alloys from a Methanol Bath. J. Appl. Electrochem., 27(2) (1997) 209–214. doi:10.1023/A:1018460109175
H Yan, J Downes, PJ Boden and SJ Harris, A Model for Nanolaminated Growth Patterns in Zn and Zn-Co Electrodeposits, J. Electrochem. Soc., 143 (5)(1996) 1577–1583. doi:10.1149/1.1836682
E Gomez and E Valles, Electrodeposition of Zinc + Cobalt Alloys: Inhibitory Effect of Zinc with Convection and pH of Solution. J. Electroanal. Chem., 397(1–2) (1995) 177–184. doi:10.1016/0022-0728(95)04195-7
E Chassaing and R Wiart, Electrocrystallization Mechanism of Zn-Ni Alloys in Chloride Electrolytes. Electrochim. Acta., 37(3) (1992) 545–553. doi:10.1016/0013-4686(92)87047-4
FJ Fabri Miranda, OE Barcia, OR Mattos, R Wiart (1997) Electrodeposition of Zn-Ni Alloys in Sulfate Electrolytes. I. Experimental Approach. J. Electrochem Soc, 144:3441–3449. doi:10.1149/1.1838030
M Lieder and S Biallozor, Study of the Electrodeposition Process of Ni-Fe Alloys from Chloride Electrolytes II. Surf. Coat. Technol., 26(1) (1998) 23–34.
M Matlosz, Competitive Adsorption Effects in the Electrodeposition in Iron-Nickel Alloys. J. Electrochem. Soc., 140 (8) (1993) 2272–2279. doi:10.1149/1.2220807
Y Keith Sasaki and B Jan Talbot, Electrodeposition of Iron-Group Metals and Binary Alloys from Sulfate Baths. II. Modeling. J. Electrochem. Soc., 147 (1) (2000) 189–197. doi:10.1149/1.1393173
WC Grande and JB Talbot, Electrodeposition of Thin Films of Nickel-Iron. II. Modeling. J. Electrochem. Soc., 140 (3) (1993) 675–681. doi:10.1149/1.2056141
N Zech, EJ Poldlaha and D Landolt, Anomalous Codeposition of Iron Group Metals. I. Experimental Results. J. Electrochem. Soc., 146 (8) (1999) 2886–2891. doi:10.1149/1.1392024
MM Abou-Krisha, Electrochemical Studies of Zinc–Nickel Codeposition in Sulphate Bath. J. Appl. Surf. Sci., 252 (4)(2005) 1035–1048. doi:10.1016/j.apsusc.2005.01.161
MH Seo, DJ Kim and JS Kim, The Effects of pH and Temperature on Ni–Fe–P Alloy Electrodeposition from a Sulfamate Bath and the Material Properties of the Deposits. Thin Solid Films, 489 (1–2) 122–129 (2005)
WEI Dawei, TADA Toshiya and OKI Takeo, Characteristics of Titanium Eectrodeposited by Potential Pulse Method in Molten Salts. J. ISIJ Int., 33 (9) 1016–1022 (1993)
JB Bajat, MD Maksimović and GR Radović, Electrochemical Deposition and Characterization of Zinc-Nickel Alloys Deposited by Direct and Pulse Current. J. Serb. Chem. Soc., 67(8–9) (2002) 625–634.
ME Soaresa, CAC Souzab and SE Kuric, Corrosion Resistance of a Zn–Ni Electrodeposited Alloy Obtained with a Controlled Electrolyte Flow and Gelatin Additive. Surf. Coat. Technol., 201 (6) 2953–2959 (2006)