Electrodeposited chalcopyrite CuInGaSe2 absorbers for solar energy harvesting

Materials Science for Energy Technologies - Tập 3 - Trang 440-445 - 2020
Sreekanth Mandati1, Bulusu V. Sarada1
1Center for Solar Energy Materials, International Advanced Research Center for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005, Telangana, India

Tài liệu tham khảo

Mandati, 2019, Copper chalcopyrites for solar energy applications, Trans. Indian Inst. Met., 72, 271, 10.1007/s12666-018-1455-0 Nakamura, 2019, Cd-Free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%, IEEE J. Photovoltaics, 9, 1863, 10.1109/JPHOTOV.2019.2937218 Broussillou, 2015, Statistical Process Control for Cu(In, Ga)(S, Se)2 electrodeposition-based manufacturing process of 60??120cm2 modules up to 14,0% efficiency, 1 Aksu, 2012, Recent advances in electroplating based CIGS solar cell fabrication, 003092 Arnou, 2016, Hydrazine-free solution-deposited CuIn(S, Se)2 solar cells by spray deposition of metal chalcogenides, ACS Appl. Mater. Interfaces, 8, 11893, 10.1021/acsami.6b01541 Uhl, 2016, Molecular-ink route to 13.0% efficient low-bandgap CuIn(S, Se)2 and 14.7% efficient Cu(In, Ga)(S, Se)2 solar cells, Energy Environ. Sci., 9, 130, 10.1039/C5EE02870A Lincot, 2005, Electrodeposition of semiconductors, Thin Solid Films, 487, 40, 10.1016/j.tsf.2005.01.032 Lincot, 2004, Chalcopyrite thin film solar cells by electrodeposition, Sol. Energy, 77, 725, 10.1016/j.solener.2004.05.024 Bhattacharya, 2013, CIGS-based solar cells prepared from electrodeposited stacked Cu/In/Ga layers, Sol. Energy Mater. Sol. Cells, 113, 96, 10.1016/j.solmat.2013.01.028 Bhattacharya, 2010, Electrodeposited two-layer Cu–In–Ga–Se/In–Se thin films, J. Electrochem. Soc., 157, D406, 10.1149/1.3427514 Mandati, 2018, Pulsed electrochemical deposition of CuInSe2 and Cu(In,Ga)Se2 semiconductor thin films, 109 Mandati, 2015, Fabrication of CuInSe2 and Cu (In, Ga) Se2 absorber layers by pulse-and pulse-reverse electrochemical techniques for solar photovoltaic applications, Phys. Rev. D, 82, 1 Valdés, 2012, Composition, morphology, and optical properties of CuInSe2 thin films electrodeposited using constant and pulsed potentials, J. Solid State Electrochem., 16, 3825, 10.1007/s10008-012-1821-5 Chitra, 2011, Electrochemical phototvoltaic cells with pulse electrodeposited copper indium selenide films, 429 Wang, 2010, CuInSe2 thin films obtained by pulse-plating electrodeposition technique with novel pulse wave, Chin. Sci. Bull., 55, 1854, 10.1007/s11434-010-3185-5 Whang, 2010, Studies of single-step electrodeposition of CuInSe2 thin films with sodium citrate as a complexing agent, Appl. Surf. Sci., 257, 1457, 10.1016/j.apsusc.2010.08.072 Chraibi, 2001, Influence of citrate ions as complexing agent for electrodeposition of CuInSe2 thin films, Phys. Status Solidi (a), 186, 373, 10.1002/1521-396X(200108)186:3<373::AID-PSSA373>3.0.CO;2-D Mishra, 1989, A voltammetric study of the electrodeposition chemistry in the Cu + In + Se system, J. Electroanal. Chem. Interfacial Electrochem., 271, 279, 10.1016/0022-0728(89)80082-8 Mandati, 2019, Two-dimensional CuIn1−xGaxSe2 nano-flakes by pulse electrodeposition for photovoltaic applications, Sol. Energy, 181, 396, 10.1016/j.solener.2019.02.022 Ganchev, 2006, Preparation of Cu(In, Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors, Thin Solid Films, 511–512, 325, 10.1016/j.tsf.2005.11.076 Ribeaucourt, 2011, Electrochemical study of one-step electrodeposition of copper–indium–gallium alloys in acidic conditions as precursor layers for Cu(In, Ga)Se2 thin film solar cells, Electrochim. Acta, 56, 6628, 10.1016/j.electacta.2011.05.033 Yu, 2010, Effect of triethanolamine and sodium dodecyl sulfate on the formation of CuInSe< sub> 2</sub> thin films by electrodeposition, Thin Solid Films, 518, 5515, 10.1016/j.tsf.2010.04.042 Ugarte, 1999, Electrodeposition of CuInSe2 thin films in a glycine acid medium, Thin Solid Films, 340, 117, 10.1016/S0040-6090(98)01361-3 Mandati, 2015, Enhanced photoresponse of Cu(In, Ga)Se2/CdS heterojunction fabricated using economical non-vacuum methods, Electron. Mater. Lett., 11, 618, 10.1007/s13391-014-4387-9 Mandati, 2013, Improved photoelectrochemical performance of Cu(In, Ga)Se2 thin films prepared by pulsed electrodeposition, J. Renew. Sustain. Energy, 5, 10.1063/1.4807615 Mandati, 2013, Pulsed electrodeposition of CuInSe2 thin films with morphology for solar cell applications, J. Electrochem. Soc., 160, D173, 10.1149/2.080304jes Mandati, 2015, Photoelectrochemistry of Cu (In, Ga) Se 2 thin-films fabricated by sequential pulsed electrodeposition, J. Power Sources, 273, 149, 10.1016/j.jpowsour.2014.09.036 Mandati, 2014, CuIn1-xGaxSe2 thin-film absorber layers for solar photovoltaics fabricated by two-stage pulsed current electrodeposition, Mater. Lett., 118, 158, 10.1016/j.matlet.2013.12.063 Liu, 2011, Preparation of Cu(In, Ga)Se2 thin films by pulse electrodeposition, J. Alloys Compd., 509, L129, 10.1016/j.jallcom.2010.12.031 Nakada, 2012, Invited paper: CIGS-based thin film solar cells and modules: unique material properties, Electron. Mater. Lett., 8, 179, 10.1007/s13391-012-2034-x Ye, 2011, Photoelectrochemical characterization of CuInSe2 and Cu(In1-xGax)Se2 thin films for solar cells, J. Phys. Chem. C, 115, 234, 10.1021/jp108170g Septina, 2017, Photoelectrochemical water reduction over wide gap (Ag, Cu)(In, Ga)S2 thin film photocathodes, PCCP, 19, 12502, 10.1039/C7CP01348E Kumagai, 2015, Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In, Ga)Se2 photocathodes, J. Mater. Chem. A, 3, 8300, 10.1039/C5TA01058F