Electrodeposited chalcopyrite CuInGaSe2 absorbers for solar energy harvesting
Tài liệu tham khảo
Mandati, 2019, Copper chalcopyrites for solar energy applications, Trans. Indian Inst. Met., 72, 271, 10.1007/s12666-018-1455-0
Nakamura, 2019, Cd-Free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%, IEEE J. Photovoltaics, 9, 1863, 10.1109/JPHOTOV.2019.2937218
Broussillou, 2015, Statistical Process Control for Cu(In, Ga)(S, Se)2 electrodeposition-based manufacturing process of 60??120cm2 modules up to 14,0% efficiency, 1
Aksu, 2012, Recent advances in electroplating based CIGS solar cell fabrication, 003092
Arnou, 2016, Hydrazine-free solution-deposited CuIn(S, Se)2 solar cells by spray deposition of metal chalcogenides, ACS Appl. Mater. Interfaces, 8, 11893, 10.1021/acsami.6b01541
Uhl, 2016, Molecular-ink route to 13.0% efficient low-bandgap CuIn(S, Se)2 and 14.7% efficient Cu(In, Ga)(S, Se)2 solar cells, Energy Environ. Sci., 9, 130, 10.1039/C5EE02870A
Lincot, 2005, Electrodeposition of semiconductors, Thin Solid Films, 487, 40, 10.1016/j.tsf.2005.01.032
Lincot, 2004, Chalcopyrite thin film solar cells by electrodeposition, Sol. Energy, 77, 725, 10.1016/j.solener.2004.05.024
Bhattacharya, 2013, CIGS-based solar cells prepared from electrodeposited stacked Cu/In/Ga layers, Sol. Energy Mater. Sol. Cells, 113, 96, 10.1016/j.solmat.2013.01.028
Bhattacharya, 2010, Electrodeposited two-layer Cu–In–Ga–Se/In–Se thin films, J. Electrochem. Soc., 157, D406, 10.1149/1.3427514
Mandati, 2018, Pulsed electrochemical deposition of CuInSe2 and Cu(In,Ga)Se2 semiconductor thin films, 109
Mandati, 2015, Fabrication of CuInSe2 and Cu (In, Ga) Se2 absorber layers by pulse-and pulse-reverse electrochemical techniques for solar photovoltaic applications, Phys. Rev. D, 82, 1
Valdés, 2012, Composition, morphology, and optical properties of CuInSe2 thin films electrodeposited using constant and pulsed potentials, J. Solid State Electrochem., 16, 3825, 10.1007/s10008-012-1821-5
Chitra, 2011, Electrochemical phototvoltaic cells with pulse electrodeposited copper indium selenide films, 429
Wang, 2010, CuInSe2 thin films obtained by pulse-plating electrodeposition technique with novel pulse wave, Chin. Sci. Bull., 55, 1854, 10.1007/s11434-010-3185-5
Whang, 2010, Studies of single-step electrodeposition of CuInSe2 thin films with sodium citrate as a complexing agent, Appl. Surf. Sci., 257, 1457, 10.1016/j.apsusc.2010.08.072
Chraibi, 2001, Influence of citrate ions as complexing agent for electrodeposition of CuInSe2 thin films, Phys. Status Solidi (a), 186, 373, 10.1002/1521-396X(200108)186:3<373::AID-PSSA373>3.0.CO;2-D
Mishra, 1989, A voltammetric study of the electrodeposition chemistry in the Cu + In + Se system, J. Electroanal. Chem. Interfacial Electrochem., 271, 279, 10.1016/0022-0728(89)80082-8
Mandati, 2019, Two-dimensional CuIn1−xGaxSe2 nano-flakes by pulse electrodeposition for photovoltaic applications, Sol. Energy, 181, 396, 10.1016/j.solener.2019.02.022
Ganchev, 2006, Preparation of Cu(In, Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors, Thin Solid Films, 511–512, 325, 10.1016/j.tsf.2005.11.076
Ribeaucourt, 2011, Electrochemical study of one-step electrodeposition of copper–indium–gallium alloys in acidic conditions as precursor layers for Cu(In, Ga)Se2 thin film solar cells, Electrochim. Acta, 56, 6628, 10.1016/j.electacta.2011.05.033
Yu, 2010, Effect of triethanolamine and sodium dodecyl sulfate on the formation of CuInSe< sub> 2</sub> thin films by electrodeposition, Thin Solid Films, 518, 5515, 10.1016/j.tsf.2010.04.042
Ugarte, 1999, Electrodeposition of CuInSe2 thin films in a glycine acid medium, Thin Solid Films, 340, 117, 10.1016/S0040-6090(98)01361-3
Mandati, 2015, Enhanced photoresponse of Cu(In, Ga)Se2/CdS heterojunction fabricated using economical non-vacuum methods, Electron. Mater. Lett., 11, 618, 10.1007/s13391-014-4387-9
Mandati, 2013, Improved photoelectrochemical performance of Cu(In, Ga)Se2 thin films prepared by pulsed electrodeposition, J. Renew. Sustain. Energy, 5, 10.1063/1.4807615
Mandati, 2013, Pulsed electrodeposition of CuInSe2 thin films with morphology for solar cell applications, J. Electrochem. Soc., 160, D173, 10.1149/2.080304jes
Mandati, 2015, Photoelectrochemistry of Cu (In, Ga) Se 2 thin-films fabricated by sequential pulsed electrodeposition, J. Power Sources, 273, 149, 10.1016/j.jpowsour.2014.09.036
Mandati, 2014, CuIn1-xGaxSe2 thin-film absorber layers for solar photovoltaics fabricated by two-stage pulsed current electrodeposition, Mater. Lett., 118, 158, 10.1016/j.matlet.2013.12.063
Liu, 2011, Preparation of Cu(In, Ga)Se2 thin films by pulse electrodeposition, J. Alloys Compd., 509, L129, 10.1016/j.jallcom.2010.12.031
Nakada, 2012, Invited paper: CIGS-based thin film solar cells and modules: unique material properties, Electron. Mater. Lett., 8, 179, 10.1007/s13391-012-2034-x
Ye, 2011, Photoelectrochemical characterization of CuInSe2 and Cu(In1-xGax)Se2 thin films for solar cells, J. Phys. Chem. C, 115, 234, 10.1021/jp108170g
Septina, 2017, Photoelectrochemical water reduction over wide gap (Ag, Cu)(In, Ga)S2 thin film photocathodes, PCCP, 19, 12502, 10.1039/C7CP01348E
Kumagai, 2015, Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In, Ga)Se2 photocathodes, J. Mater. Chem. A, 3, 8300, 10.1039/C5TA01058F