Các lớp mỏng Cu điện phân như là lớp dưới chi phí thấp và hiệu quả cho các photocathode Cu2O trong quá trình điện phân nước quang hóa học

Springer Science and Business Media LLC - Tập 24 - Trang 339-355 - 2019
Alberto Visibile1, Martina Fracchia2, Tomasz Baran3, Alberto Vertova4, Paolo Ghigna2,4, Elisabet Ahlberg5, Sandra Rondinini1,4, Alessandro Minguzzi4
1Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
2Dipartimento di Chimica, Università degli Studi di Pavia, Pavia, Italy
3SajTom Ligh Future LTD, Slomniki, Poland
4Florence, Italy
5Department of Chemistry and Molecular Biology, Gothenburg University, Göteborg, Sweden

Tóm tắt

Cu2O là một trong những chất bán dẫn được nghiên cứu nhiều nhất cho các photocathode trong quá trình phân tách nước quang điện hóa (PEC-WS). Tính ổn định thấp của nó được bù đắp bởi hoạt tính tốt, với điều kiện một lớp dưới nền/hỗ trợ phù hợp được sử dụng. Trong khi Cu2O chủ yếu được nghiên cứu trên các lớp dưới nền Au, bài viết này đề xuất Cu(0) như một sự thay thế chi phí thấp, dễ chuẩn bị và hiệu quả cao. Cu và Cu2O có thể được điện phân từ cùng một bể, do đó về nguyên tắc cho phép điều chỉnh các tính chất lý - hóa của vật liệu cuối với độ chính xác cao bằng một phương pháp có thể mở rộng. Các điện cực và photoelectrodes được nghiên cứu bằng các phương pháp điện hóa (chu kỳ voltammetry, lắng đọng dưới tiềm năng của Pb) và bằng quang phổ hấp thụ tia X ngoài chỗ (XAS). Mặc dù điện áp áp dụng cho quá trình lắng đọng Cu không ảnh hưởng đến cấu trúc bulk và dòng quang điện hiển thị bởi chất bán dẫn, nhưng nó đóng vai trò trong các dòng tối, điều này làm cho chiến lược này hứa hẹn cho việc cải thiện tính ổn định của vật liệu. Au/Cu2O và Cu/Cu2O cho thấy hiệu suất tương tự, trong đó Cu/Cu2O có những lợi thế rõ ràng cho việc sử dụng trong các ứng dụng thực tiễn trong tương lai. Ảnh hưởng của độ dày lớp dưới Cu cũng đã được đánh giá dựa trên dòng quang điện đạt được.

Từ khóa

#Cu2O #photocathode #điện phân nước quang hóa học #lớp dưới #điện hóa #dòng quang điện #quang phổ hấp thụ tia X.

Tài liệu tham khảo

Rodriguez CA, Modestino MA, Psaltis D, Moser C (2014) Design and cost considerations for practical solar-hydrogen generators. Energy Environ Sci 7:3828–3835 Ager JW, Shaner MR, Walczak KA et al (2015) Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ Sci 8:2811–2824 Pinaud BA, Benck JD, Seitz LC et al (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci 6:1983–2002 Jiang C, Moniz SJA, Wang A et al (2017) Photoelectrochemical devices for solar water splitting-materials and challenges. Chem Soc Rev 46:4645–4660 Jiménez Reinosa J, Leret P, Álvarez-Docio CM et al (2016) Enhancement of UV absorption behavior in ZnO-TiO2 composites. Bol la Soc Esp Ceram y Vidr 55:55–62 Tang SJ, Moniz SJA, Shevlin SA et al (2015) Visible-light driven heterojunction photocatalysts for water splitting – a critical review. Energy Environ Sci 8:731–759 Chen S, Wang L-W (2012) Thermodynamic oxidation and reduction potentials of Photocatalytic semiconductors in aqueous solution. Chem Mater 24:3659–3666 Bagal IV, Chodankar NR, Hassan MA et al (2019) Cu2O as an emerging photocathode for solar water splitting - a status review. Int J Hydrog Energy 44:21351–21378 Lloyd MA, Siah SC, Brandt RE, et al (2016) Intrinsic defect engineering of cuprous oxide to enhance electrical transport properties for photovoltaic applications. Conf rec IEEE Photovolt spec Conf :3443–3445 Jiang Y, Yuan H, Chen H (2014) Enhanced visible light photocatalytic activity of Cu2O via cationic-anionic passivated codoping. Phys Chem Chem Phys 17:630–637 Musa AO, Akomolafe T, Carter MJ (1998) Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties. Sol Energ Mat Sol Cell 51:305–316 Hsu YK, Yu CH, Chen YC, Lin YG (2013) Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation. J Power Sources 242:541–547 Lim Y-F, Chua CS, Lee CJJ, Chi D (2014) Sol–gel deposited Cu2O and CuO thin films for photocatalytic water splitting. Phys Chem Chem Phys 16:25928–25934 Wei M, Huo J (2010) Preparation of Cu2O nanorods by a simple solvothermal method. Mater Chem Phys 121:291–294 Wei M, Lun N, Ma X, Wen S (2007) A simple solvothermal reduction route to copper and cuprous oxide. Mater Lett 61:2147–2150 Barreca D, Comini E, Gasparotto A et al (2009) Chemical vapor deposition of copper oxide films and entangled quasi-1D nanoarchitectures as innovative gas sensors. Sensors Actuators B Chem 141:270–275 Wang S, Zhang X, Pan L et al (2015) Controllable sonochemical synthesis of Cu2O/Cu2(OH)3NO3 composites toward synergy of adsorption and photocatalysis. Appl Catal B Environ 164:234–240 Ma D, Liu H, Yang H et al (2009) High pressure hydrothermal synthesis of cuprous oxide microstructures of novel morphologies. Mater Chem Phys 116:458–463 Valodkar M, Pal A, Thakore S (2011) Synthesis and characterization of cuprous oxide dendrites: new simplified green hydrothermal route. J Alloys Compd 509:523–528 Togashi T, Hitaka H, Ohara S, et al (2010) Controlled reduction of Cu2+ to Cu+ with an N,O-type chelate under hydrothermal conditions to produce Cu2O nanoparticles. Mater Lett 64:1049–1051 Neskovska R, Ristova M, Velevska J, Ristov M (2007) Electrochromism of the electroless deposited cuprous oxide films. Thin Solid Films 515:4717–4721 Itoh T, Maki K (2007) Growth process of CuO(111) and Cu2O(001) thin films on MgO(001) substrate under metal-mode condition by reactive dc-magnetron sputtering. Vacuum 81:1068–1076 Daltin AL, Bohr F, Chopart JP (2009) Kinetics of Cu2O electrocrystallization under magnetic fields. Electrochim Acta 54:5813–5817 Golden TD, Shumsky MG, Zhou Y et al (1996) Electrochemical deposition of copper(I) oxide films. Chem Mater 8:2499–2504 Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10(6):456–461 Paracchino A, Brauer JC, Moser J-E et al (2012) Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy. J Phys Chem C 116:7341–7350 Lin C, Lai Y, Mersch D, Reisner E (2012) Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chem Sci 3:3482–3487 Elfadill NG, Hashim MR, Chahrour KM, Mohammed SA (2016) Preparation of p-type Na-doped Cu2O by electrodeposition for a p-n homojunction thin film solar cell. Semicond Sci Technol 31:065001 Mahalingam T, Chitra JS, Rajendran S et al (2000) Galvanostatic deposition and characterization of cuprous oxide thin films. J Cryst Growth 216:304–310 Daltin AL, Addad A, Chopart JP (2005) Potentiostatic deposition and characterization of cuprous oxide films and nanowires. J Cryst Growth 282:414–420 Mahalingam T, Chitra JSP, Chu JP, Sebastian PJ (2004) Preparation and microstructural studies of electrodeposited Cu2O thin films. Mater Lett 58:1802–1807 Wu G, Zhai W, Sun F et al (2012) Morphology-controlled electrodeposition of Cu2O microcrystalline particle films for application in photocatalysis under sunlight. Mater Res Bull 47:4026–4030 Wang L, Tao M (2007) Fabrication and characterization of p-n Homojunctions in cuprous oxide by electrochemical deposition. Electrochem Solid-State Lett 10:H248–H250 Yoon S, Kim M, Kim I-S et al (2014) Manipulation of cuprous oxide surfaces for improving their photocatalytic activity. J Mater Chem A 2:11621 Wang LC, de Tacconi NR, Chenthamarakshan CR et al (2007) Electrodeposited copper oxide films: effect of bath pH on grain orientation and orientation-dependent interfacial behavior. Thin Solid Films 515:3090–3095 Scanlon DO, Watson GW (2010) Undoped n-type Cu2O: fact or fiction? J Phys Chem Lett 1:2582–2585 Nian JN, Hu CC, Teng H (2008) Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination. Int J Hydrog Energy 33:2897–2903 Elmezayyen A, Guan S, Reicha FM et al (2015) Effect of conductive substrate (working electrode) on the morphology of electrodeposited Cu2O. J Phys D Appl Phys 48:175502 Wang G, van den Berg R, de Mello DC et al (2016) Silica-supported Cu2O nanoparticles with tunable size for sustainable hydrogen generation. Appl Catal B Environ 192:199–207 Paracchino A, Brauer JC, Moser J-E et al (2012) Synthesis and characterization of high-Photoactivity electrodeposited Cu2O solar absorber by Photoelectrochemistry and ultrafast spectroscopy. J Phys Chem C 116:7341–7350 Fernando CAN, De Silva l. AA, Takahashi K (2001) Junction effects of p-Cu2O photocathode with layers of hole transfer sites (au) and electron transfer sites (NiO) at the electrolyte interface. Semicond Sci Technol 16:433–439 Zhang S, Jiang R, Guo Y et al (2016) Plasmon modes induced by anisotropic gap opening in au@Cu2O Nanorods. Small 12:4264–4276 Mahmoud MA, Qian W, El-Sayed MA (2011) Following charge separation on the nanoscale in Cu2O-au nanoframe hollow nanoparticles. Nano Lett 11:3285–3289 Lan T, Mundt C, Tran M, Padalkar S (2017) Effect of gold underlayer on copper(I) oxide photocathode performance. J Mater Res 32:1656–1664 Lan T, Padalkar S (2017) Exploring the influence of au Underlayer thickness on photocathode performance. ECS Trans 80:1049–1055 Parliament E, Agency EC (2014) Commission regulation (EU) no 301/2014, amending annex XVII to regulation (EC) no 1907/2006 of the European Parliament and of the council on the registration, evaluation, authorisation and restriction of chemicals (REACH) as regards chromium VI compounds Jin Z, Hu Z, Yu JC, Wang J (2016) Room temperature synthesis of a highly active cu/Cu2O photocathode for photoelectrochemical water splitting. J Mater Chem A 4:13736–13741 Tang C, Ning X, Li J et al (2019) Modulating conductivity type of cuprous oxide (Cu2O) films on copper foil in aqueous solution by comproportionation. J Mater Sci Technol 35:1570–1577 Jung K, Lim T, Bae H et al (2019) Cu2O photocathode with faster charge transfer by fully reacted cu seed layer to enhance performance of hydrogen evolution in solar water splitting applications. ChemCatChem 11:4377–4382 Matula RA (1979) Electrical resistivity of copper , gold palladium , and silver. J Phys Chem Ref Data 8:1147–1298 Achilli E, Vertova A, Visibile A, Locatelli C, Minguzzi A, Rondinini S, Ghigna P (2017) Structure and stability of a copper(II) lactate complex in alkaline solution: a case study by energy-dispersive X-ray absorption spectroscopy. Inorg Chem 56(12):6982–6989 Liu G, Wang L, Xue D (2010) Synthesis of Cu2O crystals by galvanic deposition technique. Mater Lett 64:2475–2478 Tang Y, Chen Z, Jia Z et al (2005) Electrodeposition and characterization of nanocrystalline cuprous oxide thin films on TiO2 films. Mater Lett 59:434–438 Septina W, Ikeda S, Khan MA et al (2011) Potentiostatic electrodeposition of cuprous oxide thin films for photovoltaic applications. Electrochim Acta 56:4882–4888 Wijesundera RP, Hidaka M, Koga K et al (2006) Growth and characterisation of potentiostatically electrodeposited Cu2O and cu thin films. Thin Solid Films 500:241–246 Mathew X, Mathews NR, Sebastian PJ (2001) Temperature dependence of the optical transitions in electrodeposited Cu2O thin films. Sol Energy Mater Sol Cells 70:277–286 Vilche JR, Juttner K (1987) Anion effects on the underpotential deposition of lead on cu(111). Electrochim Acta 32:1567–1572 Brisard GM, Zenati E, Gasteiger HA, et al (1996) Underpotential Deposition of Lead on Copper ( l11 ): A Study Using a Single-Crystal Rotating Ring Disk Electrode and ex Situ Low-Energy Electron Diffraction and Auger Electron Spectroscopy. Langmuir 11:2221–2230 Ravel B, Newville M (2005) ATHENA , ARTEMIS, HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12(Pt 4):537–541 Newville M (2001) IFEFFIT: interactive XAFS analysis and FEFF fitting. J Synchrotron Radiat 8(Pt 2):322–324 Yang Y, Li Y, Pritzker M (2016) Control of Cu2O film morphology using Potentiostatic pulsed Electrodeposition. Electrochim Acta 213:225–235 Zhang Z, Wang P (2012) Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J Mater Chem 22:2456–2464 Bijani S, Schrebler R, Dalchiele EA et al (2011) Study of the nucleation and growth mechanisms in the electrodeposition of micro- and nanostructured Cu2O thin films. J Phys Chem C 115:21373–21382 Heng B, Xiao T, Hu X et al (2011) Catalytic activity of Cu2O micro-particles with different morphologies in the thermal decomposition of ammonium perchlorate. Thermochim Acta 524:135–139 Huang L, Peng F, Yu H, Wang H (2009) Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion. Solid State Sci 11:129–138 Kakuta S, Abe T (2009) Photocatalytic activity of Cu2O nanoparticles prepared through novel synthesis method of precursor reduction in the presence of thiosulfate. Solid State Sci 11:1465–1469 Long J, Dong J, Wang X et al (2009) Photochemical synthesis of submicron- and nano-scale Cu2O particles. J Colloid Interface Sci 333:791–799 Zhang X, Song J, Jiao J, Mei X (2010) Preparation and photocatalytic activity of cuprous oxides. Solid State Sci 12:1215–1219 Singh DP, Singh JAI, Mishra PR, et al (2008) Synthesis , characterization and application of semiconducting oxide ( Cu2O and ZnO ) nanostructures. Bull Mater Sci 31:319–325 Zhou Y, Switzer JA (1998) Electrochemical deposition and microstructure of copper (I) oxide films. Scr Mater 38:1731–1738 Ma QB, Hofmann JP, Litke A, Hensen EJM (2015) Cu2O photoelectrodes for solar water splitting: tuning photoelectrochemical performance by controlled faceting. Sol Energy Mater Sol Cells 141:178–186 Heltemes EC (1966) Far-infrared properties of cuprous oxide. Phys Rev 141:803–805 Siegenthaler H, Juttner K (1984) Voltammetric investigation of lead adsorption on cu(111) single crystal substrates. J Electroanal Chem 163:327–343 Bewick A, Jovicevic J, Thomas B (1984) Phase formation in the underpotential deposition of metals. Faraday Symp Chem Soc 12:24–35 Bewick A, Jovićević J, Thomas B (1977) Phase formation in the underpotential deposition of metals. Faraday Symp Chem Soc 12:24–35 Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3:37–46 Zheng Z, Huang B, Wang Z et al (2009) Crystal faces of Cu2O and their stabilities in photocatalytic reactions. J Phys Chem C 113:14448–14453 Kwon Y, Soon A, Han H, Lee H (2015) Shape effects of cuprous oxide particles on stability in water and photocatalytic water splitting. J Mater Chem A 3:156–162 Huang C-L, Weng W-L, Huang Y-S, Liao C-N (2019) Enhanced photolysis stability of Cu2O grown on cu nanowires with nanoscale twin boundaries. Nanoscale 11(29):13709–13713 Visibile A, Wang RB, Vertova A et al (2019) Influence of strain on the band gap of Cu2O. Chem Mater Chem Mater 31:4787–4792