Electroconvulsive therapy and determination of cerebral dominance

Annals of General Hospital Psychiatry - Tập 3 - Trang 1-4 - 2004
Milan Dragovic1, Lindsay Allet2, Aleksandar Janca2,3
1Centre for Clinical Research in Neuropsychiatry, Graylands Hospital, Perth, Australia
2Inner City Mental Health Service, Royal Perth Hospital, Perth, Australia
3School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, Australia

Tóm tắt

Electroconvulsive therapy (ECT) often results in a number of short- and long-time side effects including memory impairment for past and current events, which can last for several months after ECT treatment. It has been suggested that unilateral ECT (uECT) with electrodes placed over the non-dominant (typically right) hemisphere significantly reduces side effects, especially memory disturbances. It is important to note that cerebral dominance equates to speech dominance and avoiding this area of the brain also reduces speech dysfunction after ECT. Traditionally, the routine clinical determination of cerebral dominance has been through the assessment of hand, foot and eye dominance, which is an easy and inexpensive approach that, however, does not ensure accuracy. This review of literature on different methods and techniques for determination of cerebral dominance and provides evidence that functional transcranial Doppler sonography (fTCD) represents a valid and safe alternative to invasive techniques for identifying speech lateralisation. It can be concluded that fTCD, notwithstanding its costs, could be used as a standard procedure prior to uECT treatment to determine cerebral dominance, thereby further reducing cognitive side-effects of ECT and possibly making it more acceptable to both patients and clinicians.

Từ khóa


Tài liệu tham khảo

American Psychiatric Association: The practice of electroconvulsive therapy: Recommendations for treatment, training, and privileging: A task force report of the American Psychiatric Association. Washington DC: American Psychiatric Association. 1990

Folkerts HW, Michael N, Tolle R: Electroconvulsive therapy vs paroxetine in treatment resistant depression – a randomised study. Acta Psychiatr Scand. 1977, 96: 334-342.

Savithasri VE, McLoughlin DM: Electroconvulsive therapy – state of the art. Brit J Psychiat. 2003, 182: 8-9. 10.1192/bjp.182.1.8.

National Institute for Clinical Excellence: Guidance on the use of electroconvulsive therapy. London: National Institute for Clinical Excellence. 2003

Wijeratne C, Halliday GS, Lyndon RW: The present status of electroconvulsive therapy: A systematic review. Med J Australia. 1999, 171: 250-254.

Zamora EN, Kaelbling R: Memory and electroconvulsive therapy. Am J Psychiatry. 1965, 122: 546-554.

Fleminger JJ, Horne DJ, Nair NPV, Nott PN: Differential effect of unilateral and bilateral ECT. Am J Psychiatry. 1970, 127: 430-436.

Sackeim HA, Prudic J, Devanand DP, et al: A prospective, randomized, double-blind comparison of bilateral and unilateral electroconvulsive therapy at different stimulus intensities. Arch Gen Psychiat. 2000, 57: 425-434. 10.1001/archpsyc.57.5.425.

Strachan JA: Electroconvulsive therapy – attitudes and practice in New Zealand. Psychiatric Bulletin. 2001, 25: 467-470. 10.1192/pb.25.12.467.

Pratt RTC, Warrington EK, Halliday AM: Unilateral ECT as a test for cerebral dominance, with a strategy for treating left-handers. Brit J Psychiat. 1971, 119: 79-83.

Näätänen R, Lehtokoski A, Lennes M, Chenour M, Huotllainen M, Ilmoniemi RJ, Luuk A, Allik J, Sinkkonen J, Alho K: Language specific phoneme representations revealed by electric and magnetic brain responses. Nature. 1997, 385: 432-434. 10.1038/385432a0.

Freeman CPL: Electroconvulsive therapy: Its current clinical use. Brit J Hosp Med. 1979, 21: 281-292.

Allen GS: Letter: Language lateralisation and unilateral ECT. Brit J Psychiat. 1980, 136: 316-

Warrington EK, Pratt RT: The significance of laterality effects. J Neurol Neurosurg Psychiatry. 1981, 44: 193-196.

McKeveer WF, Van Deventer AD: Inverted handwriting position, language laterality, and the Levy-Nagylaki model of handedness and cerebral organisation. Neuropsychologia. 1980, 18: 99-102. 10.1016/0028-3932(80)90090-1.

Beaumont JG, McCarthy R: Dichotic ear asymmetry and writing posture. Neuropsychologia. 1981, 19: 469-472. 10.1016/0028-3932(81)90078-6.

Milner B: Psychological aspects of focal epilepsy and its neurosurgical managament. In: Advances in Neurology. Edited by: Purpura DP, Penry JK, Walters RD. 1975, New York: Raven, 8:

Rossi GF, Rosadini G: Experimental analysis of cerebral dominance in men. In: Brain mechanisms underlying speech and language. Edited by: Millikan CH, Darley FL. New York: Grune

Pratt RTC, Warrington EK: The assessment of cerebral dominance with unilateral ECT. Brit J Psychiat. 1972, 121: 327-328.

Warrington EK, Pratt RT: Language laterality in left handers assessed by unilateral ECT. Neuropsychologia. 1973, 11: 423-428. 10.1016/0028-3932(73)90029-8.

Geffen G, Traub E, Stierman I: Language laterality assessed by unilateral ECT and dichotic monitoring. J Neurol Neurosurg Psychiatry. 1978, 41: 354-360.

Geffen G, Traub E: Preferred hand and familial sinistrality in dichotic monitoring. Neuropsychologia. 1979, 17: 527-532. 10.1016/0028-3932(79)90061-7.

Springer JA, Binder JR, Hammeke TA, Swanson SJ, Frost JA, Bellgowan PS, Brewer CC, Perry HM, Morris GL, Mueller WM: Language dominance in neurologically normal and epilepsy subjects: A functional MRI study. Brain. 1999, 122: 2033-2045. 10.1093/brain/122.11.2033.

Pujol JDJ, Losilla J, Capdevila A: Cerebral lateralization of language in normal left-handed people studied by functional MRI. Neurology. 1999, 52 (5): 1038-1043.

Szaflarski JP, Binder JR, Possing ET, McKiernan KA, Ward BD, Hammeke TA: Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology. 2002, 59 (2): 238-244.

Hund-Georgiadis M, Lex U, Friederici AD, von Cramon DY: Non-invasive regime for language lateralization in right- and left-handers by means of functional MRI and dichotic listening. Exp Brain Res. 2002, 145 (2): 166-176. 10.1007/s00221-002-1090-0.

Knecht SDB, Deppe M, Bobe L, Lohmann H, Flöel A, Ringelstein EB, Henningsen H: Handedness and hemispheric language dominance in healthy humans. Brain. 2000, 123: 2512-2518. 10.1093/brain/123.12.2512.

Kopelman MD: Speech dominance, handedness and electro-convulsions. Psychol Med. 1982, 12: 667-670.

Halliday AM, Davison K, Browne MW, Kreeger LC: A comparison of the effects on depression and memory of bilateral ECT and unilateral ECT to the dominant and non-dominant hemispheres. Brit J Psychiat. 1968, 114: 997-1012.

Wada J, Rasmussen T: Intracarotid injection of sodium amytal for the lateralisation of sebrebral speech dominance. J Neurosurg. 1960, 17: 266-282.

Weiner RD: The psychiatric use of electrically induced seizures. Am J Psychiatry. 1978, 136: 1507-1517.

Deppe M, Ringelstein EB, Knecht S: The investigation of functional brain lateralization by transcranial Doppler sonography. Neuroimage. 2004, 21 (3): 1124-1146. 10.1016/j.neuroimage.2003.10.016.

Knecht S, Deppe M, Ebner A, Henningsen H, Huber T, Jokeit H, Ringelstein EB: Noninvasive determination of language lateralization by functional transcranial Doppler Sonography: A comparison with the Wada test. Stroke. 1998, 29: 82-86.

Rihs F, Sturzenegger M, Gutbrod K, Schroth G, Mattle HP: Determination of language dominance: Wada test confirms functional transcranial Doppler sonography. Neurology. 1999, 52 (8): 1591-1596.

Knake S, Haag A, Hamer HM, Dittmer C, Bien S, Oertel WH, Rosenow F: Language lateralisation in patients with temporal lobe epilepsy: A comparison of functional transcranial Doppler sonography and the Wada test. Neuroimage. 2003, 19 (3): 1228-1232. 10.1016/S1053-8119(03)00174-5.

Deppe M, Knecht S, Papke K, Lohmann H, Fleischer H, Heindel W, Ringelstein EB, Henningsen H: Functional MRI measurement of language lateralisation in Wada- tested patients. J Cereb Blood Flow Metab. 2000, 20 (2): 263-268. 10.1097/00004647-200002000-00006.