Electrochemistry in sensing of molecular interactions of proteins and their behavior in an electric field
Tóm tắt
Electrochemical methods can be used not only for the sensitive analysis of proteins but also for deeper research into their structure, transport functions (transfer of electrons and protons), and sensing their interactions with soft and solid surfaces. Last but not least, electrochemical tools are useful for investigating the effect of an electric field on protein structure, the direct application of electrochemical methods for controlling protein function, or the micromanipulation of supramolecular protein structures. There are many experimental arrangements (modalities), from the classic configuration that works with an electrochemical cell to miniaturized electrochemical sensors and microchip platforms. The support of computational chemistry methods which appropriately complement the interpretation framework of experimental results is also important. This text describes recent directions in electrochemical methods for the determination of proteins and briefly summarizes available methodologies for the selective labeling of proteins using redox-active probes. Attention is also paid to the theoretical aspects of electron transport and the effect of an external electric field on the structure of selected proteins. Instead of providing a comprehensive overview, we aim to highlight areas of interest that have not been summarized recently, but, at the same time, represent current trends in the field.
Tài liệu tham khảo
Curry S (2015) Structural biology: a century-long journey into an unseen world. Interdiscip Sci Rev 40(3):308–328. https://doi.org/10.1179/0308018815z.000000000120
Koryta J (1990) The origin of polarography. J Electroanal Chem 296(2):293–297. https://doi.org/10.1016/0022-0728(90)87254-H
Heyrovsky M (2004) Early polarographic studies on proteins. Electroanalysis 16(13-14):1067–1073. https://doi.org/10.1002/elan.200403008
Zuman P, Palecek E (2005) Polarography of proteins: a history. In: Palecek E, Scheller F, Wang J (eds) Perspectives in Bioanalysis. Elsevier, 1, pp 755–771. https://doi.org/10.1016/S1871-0069(05)01020-7
Eddowes MJ, Hill HAO (1977) Novel method for the investigation of the electrochemistry of metalloproteins: cytochrome c. J Chem Soc, Chem Commun 21:771b–7712b. https://doi.org/10.1039/C3977000771B
Blanford CF (2013) The birth of protein electrochemistry. Chem Commun 49(95):11130–11132. https://doi.org/10.1039/C3CC46060F
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I et al (2014) Metalloproteins containing cytochrome, iron–sulfur, or copper redox centers. Chem Rev 114(8):4366–4469. https://doi.org/10.1021/cr400479b
Sarkar A, Chattopadhyay S, Mukherjee M, Ghosh Dey S, Dey A (2022) Assembly of redox active metallo-enzymes and metallo-peptides on electrodes: abiological constructs to probe natural processes. Curr Opin Chem Biol 68:102142. https://doi.org/10.1016/j.cbpa.2022.102142
Yates NDJ, Fascione MA, Parkin A (2018) Methodologies for “wiring” redox proteins/enzymes to electrode surfaces. Chem Eur J 24:12164–12182. https://doi.org/10.1002/chem.201800750
Laftsoglou T, Jeuken LJC (2017) Supramolecular electrode assemblies for bioelectrochemistry. Chem Commun 53(27):3801–3809. https://doi.org/10.1039/c7cc01154g
Vacek J, Zatloukalova M, Novak D (2018) Electrochemistry of membrane proteins and protein–lipid assemblies. Curr Opin Electrochem 12:73–80. https://doi.org/10.1016/j.coelec.2018.04.012
Vacek J, Hrbac J (2020) Sensors and microarrays in protein biomarker monitoring: an electrochemical perspective spots. Bioanalysis 12(18):1337–1345. https://doi.org/10.4155/bio-2020-0166
Van Gool A, Corrales F, Colovic M, Krstic D, Oliver-Martos B, Martínez-Cáceres E et al (2020) Analytical techniques for multiplex analysis of protein biomarkers. Exp Rev Proteom 17(4):257–273. https://doi.org/10.1080/14789450.2020.1763174
Blumberger J (2015) Recent advances in the theory and molecular simulation of biological electron transfer reactions. Chem Rev 115:11191–11238. https://doi.org/10.1021/acs.chemrev.5b00298
Sęk S, Vacek J, Dorcak V (2019) Electrochemistry of peptides. Curr Opin. Electrochem 14:166–172. https://doi.org/10.1016/j.coelec.2019.03.002
Suprun EV (2021) Direct electrochemistry of proteins and nucleic acids: the focus on 3D structure. Electrochem Commun 125:106983. https://doi.org/10.1016/j.elecom.2021.106983
Palecek E, Heyrovsky M, Dorcak V (2018) J. Heyrovský’s oscillographic polarography. Roots of present chronopotentiometric analysis of biomacromolecules. Electroanalysis 30(7):1259–1270. https://doi.org/10.1002/elan.201800109
Palecek E, Tkac J, Bartosik M, Bertok T, Ostatna V, Palecek J (2015) Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 115(5):2045–2108. https://doi.org/10.1021/cr500279h
Li J, Hu R, Li X, Tong X, Yu D, Zhao Q (2017) Tiny protein detection using pressure through solid-state nanopores. Electrophoresis 38(8):1130–1138. https://doi.org/10.1002/elps.201600410
Liu W, Yang CN, Yang ZL, Yu RJ, Long YT, Ying YL (2023) Observing confined local oxygen-induced reversible thiol/disulfide cycle with a protein nanopore. Angew Chem Int Ed 62(27). https://doi.org/10.1002/anie.202304023
Luan B, Stolovitzky G, Martyna G (2012) Slowing and controlling the translocation of DNA in a solid-state nanopore. Nanoscale 4(4):1068–1077. https://doi.org/10.1039/c1nr11201e
Maglia G, Heron AJ, Stoddart D, Japrung D, Bayley H Analysis of single nucleic acid molecules with protein nanopores. Method Enzymol 4752010:591–623. https://doi.org/10.1016/S0076-6879(10)75022-9
Havran L, Vacek J, Dorcak V (2022) Free and bound histidine in reactions at mercury electrode. J Electroanal Chem 916:116336. https://doi.org/10.1016/j.jelechem.2022.116336
Sumitha MS, Xavier TS (2023) Recent advances in electrochemical biosensors – a brief review. Hybrid Adv 2:100023. https://doi.org/10.1016/j.hybadv.2023.100023
Palecek E, Ostatna V (2007) Electroactivity of nonconjugated proteins and peptides. Towards electroanalysis of all proteins. Electroanalysis 19:2383–2403. https://doi.org/10.1002/elan.200704033|ISSN
Mostafa AM, Barton SJ, Wren SP, Barker J (2021) Review on molecularly imprinted polymers with a focus on their application to the analysis of protein biomarkers. TrAC Trends Anal Chem 144:116431. https://doi.org/10.1016/j.trac.2021.116431
Palecek E, Dorcak V (2017) Label-free electrochemical analysis of biomacromolecules. Appl Mater Today 9:434–450. https://doi.org/10.1016/j.apmt.2017.08.011
Ramsden JJ (1994) Experimental methods for investigating protein adsorption kinetics at surfaces. Q Rev Biophys 27(1):41–105. https://doi.org/10.1017/S0033583500002900
Randviir EP, Banks CE (2022) A review of electrochemical impedance spectroscopy for bioanalytical sensors. Anal Methods 14(45):4602–4624. https://doi.org/10.1039/D2AY00970F
Arrigan DWM, Hackett MJ, Mancera RL (2018) Electrochemistry of proteins at the interface between two immiscible electrolyte solutions. Curr Opin Electrochem 12:27–32. https://doi.org/10.1016/j.coelec.2018.07.012
Suprun EV, Budnikov HC (2022) Bioelectrochemistry as a field of analysis: historical aspects and current status. J Anal Chem 77(6):643–663. https://doi.org/10.1134/S1061934822060168
Vargova V, Zivanovic M, Dorcak V, Palecek E, Ostatna V (2013) Catalysis of hydrogen evolution by polylysine, polyarginine and polyhistidine at mercury electrodes. Electroanalysis 25(9):2130–2135. https://doi.org/10.1002/elan.201300170
Zivanovic M, Aleksic M, Ostatna V, Doneux T, Palecek E (2010) Polylysine-catalyzed hydrogen evolution at mercury electrodes. Electroanalysis 22(17-18):2064–2071. https://doi.org/10.1002/elan.201000088
Dorcak V, Vargova V, Ostatna V, Palecek E (2015) Lysine, arginine, and histidine residues in peptide-catalyzed hydrogen evolution at mercury electrodes. Electroanalysis 27(4):910–916. https://doi.org/10.1002/elan.201400644
Doneux T, Ostatna V, Palecek E (2012) On the mechanism of hydrogen evolution catalysis by proteins: a case study with bovine serum albumin. Electrochim Acta 56(25):9337–9343. https://doi.org/10.1016/j.electacta.2011.08.017
Ostatna V, Dogan B, Uslu B, Ozkan S, Palecek E (2006) Native and denatured bovine serum albumin. D.c. polarography, stripping voltammetry and constant current chronopotentiometry. J Electroanal Chem 593:172–178. https://doi.org/10.1016/j.jelechem.2006.03.037
Cernocka H, Ostatna V, Palecek E (2015) Protein structural transition at negatively charged electrode surfaces. Effects of temperature and current density. Electrochim Acta 174:356–360. https://doi.org/10.1016/j.electacta.2015.06.009
Ostatna V, West RM (2020) Effects of ex situ chronopotentiometric analysis on stability of bovine serum albumin on mercury electrodes. J Electroanal Chem 860:113884. https://doi.org/10.1016/j.jelechem.2020.113884
Cernocka H, Ostatna V, Palecek E (2015) Fast-scan cyclic voltammetry with thiol-modified mercury electrodes distinguishes native from denatured BSA. Electrochem Commun 61:114–116. https://doi.org/10.1016/j.elecom.2015.10.017
Palecek E, Ostatna V (2009) Ionic strength-dependent structural transition of proteins at electrode surfaces. Chem Commun 13:1685–1687. https://doi.org/10.1039/B822274F
Ostatna V, Cernocka H, Palecek E (2010) Protein structure-sensitive electrocatalysis at DTT-modified electrodes. J Am Chem Soc 132(27):9408–9413. https://doi.org/10.1021/ja102427y
Ostatna V, Kuralay F, Trnkova L, Palecek E (2008) Constant current chronopotentiometry and voltammetry of native and denatured serum albumin at mercury and carbon electrodes. Electroanalysis 20:1406–1413. https://doi.org/10.1002/elan.200804206
Ostatna V, Palecek E (2008) Native, denatured and reduced BSA - enhancement of chronopotentiometric peak H by guanidinium chloride. Electrochim Acta 53(11):4014–4021. https://doi.org/10.1016/j.electacta.2007.10.035
Rimankova L, Cernocka H, Tihlarikova E, Nedela V, Ostatna V (2022) Chronopotentiometric sensing of native, oligomeric, denatured and aggregated serum albumin at charged surfaces. Bioelectrochemistry 145:108100. https://doi.org/10.1016/j.bioelechem.2022.108100
Palecek E, Ostatna V, Masarik M, Bertoncini CW, Jovin TM (2008) Changes in interfacial properties of alpha-synuclein preceding its aggregation. Analyst 133(1):76–84. https://doi.org/10.1039/b712812f
Ostatna V, Kasalova V, Kmetova K, Sedo O (2018) Changes of electrocatalytic response of bovine serum albumin after its methylation and acetylation. J Electroanal Chem 821:97–103. https://doi.org/10.1016/j.jelechem.2017.11.044
Izadi N, Cernocka H, Trefulka M, Ostatna V (2020) Influence of protein modification and glycosylation in the catalytic hydrogen evolution reaction of avidin and neutravidin: an electrochemical analysis. ChemPlusChem 85(6):1347–1353. https://doi.org/10.1002/cplu.202000298
Havlikova M, Zatloukalova M, Ulrichova J, Dobes P, Vacek J (2015) Electrocatalytic assay for monitoring methylglyoxal-mediated protein glycation. Anal Chem 87(3):1757–1763. https://doi.org/10.1021/ac503705d
Borsarelli CD, Falomir-Lockhart LJ, Ostatna V, Fauerbach JA, Hsiao HH, Urlaub H et al (2012) Biophysical properties and cellular toxicity of covalent crosslinked oligomers of alpha-synuclein formed by photoinduced side-chain tyrosyl radicals. Free Radic Biol Med 53(4):1004–1015. https://doi.org/10.1016/j.freeradbiomed.2012.06.035
Vargova V, Gimenez RE, Cernocka H, Trujillo DC, Tulli F, Zanini VIP et al (2016) Label-free electrochemical detection of singlet oxygen protein damage. Electrochim Acta 187:662–669. https://doi.org/10.1016/j.electacta.2015.11.104
Kasalova V, Hrstka R, Hernychova L, Coufalova D, Ostatna V (2017) Chronopotentiometric sensing of anterior gradient 2 protein. Electrochim Acta 240:250–257. https://doi.org/10.1016/j.electacta.2017.04.090
Palecek E, Ostatna V, Cernocka H, Joerger AC, Fersht AR (2011) Electrocatalytic monitoring of metal binding and mutation-induced conformational changes in p53 at picomole level. J Am Chem Soc 133(18):7190–7196. https://doi.org/10.1021/ja201006s
Cernocka H, Fojt L, Adamik M, Brazdova M, Palecek E, Ostatna V (2019) Interfacial properties of p53-DNA complexes containing various recognition elements. J Electroanal Chem 848:113300. https://doi.org/10.1016/j.jelechem.2019.113300
Palecek E, Cernocka H, Ostatna V, Navratilova L, Brazdova M (2014) Electrochemical sensing of tumor suppressor protein p53–deoxyribonucleic acid complex stability at an electrified interface. Anal Chim Acta 828:1–8. https://doi.org/10.1016/j.aca.2014.03.029
Ostatna V, Kasalova-Vargova V, Kekedy-Nagy L, Cernocka H, Ferapontova EE (2017) Chronopotentiometric sensing of specific interactions between lysozyme and the DNA aptamer. Bioelectrochemistry 114:42–47. https://doi.org/10.1016/j.bioelechem.2016.12.003
Ostatna V, Kasalova V, Sommerova L, Hrstka R (2018) Electrochemical sensing of interaction of anterior gradient-2 protein with peptides at a charged interface. Electrochim Acta 269:70–75. https://doi.org/10.1016/j.electacta.2018.02.152
Belicky S, Cernocka H, Bertok T, Holazova A, Reblova K, Palecek E et al (2017) Label-free chronopotentiometric glycoprofiling of prostate specific antigen using sialic acid recognizing lectins. Bioelectrochemistry 117:89–94. https://doi.org/10.1016/j.bioelechem.2017.06.005
Vargova V, Helma R, Palecek E, Ostatna V (2016) Electrochemical sensing of concanavalin A and ovalbumin interaction in solution. Anal Chim Acta 935:97–103. https://doi.org/10.1016/j.aca.2016.06.055
Cernocka H, Vonka P, Kasalova V, Sommerova L, Vandova V, Hrstka R et al (2021) AGR2-AGR3 hetero-oligomeric complexes: identification and characterization. Bioelectrochemistry 140:107808. https://doi.org/10.1016/j.bioelechem.2021.107808
Ostatna V, Hason S, Kasalova V, Durech M, Hrstka R (2019) Anterior gradient-3 protein-antibody interaction at charged interfaces. Label-free chronopotentiometric sensing. Electrochim Acta 297:974–979. https://doi.org/10.1016/j.electacta.2018.12.049
Novak D, Viskupicova J, Zatloukalova M, Heger V, Michalikova S, Majekova M et al (2018) Electrochemical behavior of sarco/endoplasmic reticulum Ca-ATPase in response to carbonylation processes. J Electroanal Chem 812:258–264. https://doi.org/10.1016/j.jelechem.2018.01.036
Svrckova M, Zatloukalova M, Dvorakova P, Coufalova D, Novak D, Hernychova L et al (2017) Na+/K+-ATPase interaction with methylglyoxal as reactive metabolic side product. Free Radic Biol Med 108:146–154. https://doi.org/10.1016/j.freeradbiomed.2017.03.024
Vacek J, Zatloukalova M, Geleticova J, Kubala M, Modriansky M, Fekete L et al (2016) Electrochemical platform for the detection of transmembrane proteins reconstituted into liposomes. Anal Chem 88(8):4548–4556. https://doi.org/10.1021/acs.analchem.6b00618
Vacek J, Zatloukalova M, Havlikova M, Ulrichova J, Kubala M (2013) Changes in the intrinsic electrocatalytic nature of Na+/K+ ATPase reflect structural changes on ATP-binding: electrochemical label-free approach. Electrochem Commun 27:104–107. https://doi.org/10.1016/j.elecom.2012.11.020
Zatloukalova M, Nazaruk E, Novak D, Vacek J, Bilewicz R (2018) Lipidic liquid crystalline cubic phases for preparation of ATP-hydrolysing enzyme electrodes. Biosens Bioelectron 100:437–444. https://doi.org/10.1016/j.bios.2017.09.036
Neumann E (1986) Chemical electric-field effects in biological macromolecules. Prog Biophys Mol Biol 47(3):197–231. https://doi.org/10.1016/0079-6107(86)90014-3
Vacek J, Svrckova M, Zatloukalova M, Novak D, Proskova J, Langova K et al (2018) Electrocatalytic artificial carbonylation assay for observation of human serum albumin inter-individual properties. Anal Biochem 550:137–143. https://doi.org/10.1016/j.ab.2018.04.025
Hernychova L, Alexandri E, Tzakos AG, Zatloukalova M, Primikyri A, Gerothanassis IP et al (2022) Serum albumin as a primary non-covalent binding protein for nitro-oleic acid. Int J Biol Macromol 203:116–129. https://doi.org/10.1016/j.ijbiomac.2022.01.050
Zatloukalova M, Mojovic M, Pavicevic A, Kabelac M, Freeman BA, Pekarova M et al (2019) Redox properties and human serum albumin binding of nitro-oleic acid. Redox Biol 24:101213. https://doi.org/10.1016/j.redox.2019.101213
Juskova P, Ostatna V, Palecek E, Foret F (2010) Fabrication and characterization of solid mercury amalgam electrodes for protein analysis. Anal Chem 82(7):2690–2695. https://doi.org/10.1021/ac902333s
Doneux T, Dorcak V, Palecek E (2010) Influence of the interfacial peptide organization on the catalysis of hydrogen evolution. Langmuir 26(2):1347–1353. https://doi.org/10.1021/la9024603
Dorcak V, Palecek E (2019) Catalytic deuterium evolution and H/D exchange in DNA. ChemElectroChem 6(4):1032–1039. https://doi.org/10.1002/celc.201801214
Ilimbi D, Buess-Herman C, Doneux T (2019) Chronopotentiometry as a sensitive interfacial characterisation tool for peptide aptamer monolayers. Electroanalysis 31(10):2041–2047. https://doi.org/10.1002/elan.201900285
Rimankova L, Hason S, Danhel A, Fojta M, Ostatna V (2020) Catalytic and redox activity of nucleic acids at mercury electrodes: roles of nucleobase residues. J Electroanal Chem 858:113812. https://doi.org/10.1016/j.jelechem.2019.113812
Brabec V, Vetterl V, Vrana O (1996) Electroanalysis of biomacromolecules. In: Brabec V, Walz D, Milazzo G (eds) Experimental Techniques in Bioelectrochemistry. Birghauser Verlag, Basel, p 287
Herzog G, Arrigan DW (2007) Electrochemical strategies for the label-free detection of amino acids, peptides and proteins. Analyst 132(7):615–632. https://doi.org/10.1039/B701472D
Baluchova S, Danhel A, Dejmkova H, Ostatna V, Fojta M, Schwarzova-Peckova K (2019) Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules - a review. Anal Chim Acta 1077:30–66. https://doi.org/10.1016/j.aca.2019.05.041
Ostatna V, Cernocka H, Kurzatkowska K, Palecek E (2012) Native and denatured forms of proteins can be discriminated at edge plane carbon electrodes. Anal Chim Acta 735:31–36. https://doi.org/10.1016/j.aca.2012.05.012
Enache TA, Oliveira-Brett AM (2013) Peptide methionine sulfoxide reductase A (MsrA): direct electrochemical oxidation on carbon electrodes. Bioelectrochemistry 89:11–18. https://doi.org/10.1016/j.bioelechem.2012.08.004
Ostatna V, Vargova V, Hrstka R, Durech M, Vojtesek B, Palecek E (2014) Effect of His6-tagging of anterior gradient 2 protein on its electro-oxidation. Electrochim Acta 150:218–222. https://doi.org/10.1016/j.electacta.2014.10.125
Cai XH, Rivas G, Farias PAM, Shiraishi H, Wang J, Palecek E (1996) Potentiometric stripping analysis of bioactive peptides at carbon electrodes down to subnanomolar concentrations. Anal Chim Acta 332(1):49–57. https://doi.org/10.1016/0003-2670(96)00189-4
Hughes ZE, Walsh TR (2015) What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces. J Mater Chem B 3(16):3211–3221. https://doi.org/10.1039/c5tb00004a
Oliveira SCB, Santarino IB, Oliveira-Brett AM (2013) Direct electrochemistry of native and denatured anticancer antibody rituximab at a glassy carbon electrode. Electroanalysis 25(4):1029–1034. https://doi.org/10.1002/elan.201200552
Fernandes IPG, Oliveira-Brett AM (2017) Calcium-induced calmodulin conformational change. Electrochemical evaluation. Bioelectrochemistry 113:69–78. https://doi.org/10.1016/j.bioelechem.2016.10.002
Topal BD, Özkan SA, Uslu B (2014) Direct electrochemistry of native and denatured alpha-2-Macroglobulin by solid electrodes. J Electroanal Chem 719:14–18. https://doi.org/10.1016/j.jelechem.2014.02.008
Lopes P, Xu M, Zhang M, Zhou T, Yang YL, Wang C et al (2014) Direct electrochemical and AFM detection of amyloid-beta peptide aggregation on basal plane HOPG. Nanoscale 6(14):7853–7857. https://doi.org/10.1039/c4nr02413c
Suprun EV, Khmeleva SA, Radko SP, Archakov AI, Shumyantseva VV (2016) Electrochemical analysis of amyloid-beta domain 1-16 isoforms and their complexes with Zn(II) ions. Electrochim Acta 187:677–683. https://doi.org/10.1016/j.electacta.2015.11.111
Vestergaard M, Kerman K, Saito M, Nagatani N, Takamura Y, Tamiya E (2005) A rapid label-free electrochemical detection and kinetic study of Alzheimer’s amyloid beta aggregation. J Am Chem Soc 127(34):11892–11893. https://doi.org/10.1021/ja052522q
Kerman K, Vestergaard M, Chikae M, Yamamura S, Tamiya E (2007) Label-free electrochemical detection of the phosphorylated and non-phosphorylated forms of peptides based on tyrosine oxidation. Electrochem Commun 9(5):976–980. https://doi.org/10.1016/j.elecom.2006.11.033
Suprun EV, Zharkova MS, Morozevich GE, Veselovsky AV, Shumyantseva VV, Archakov AI (2013) Analysis of redox activity of proteins on the carbon screen printed electrodes. Electroanalysis 25(9):2109–2116. https://doi.org/10.1002/elan.201300248
Novak D, Mojovic M, Pavicevic A, Zatloukalova M, Hernychova L, Bartosik M et al (2018) Electrochemistry and electron paramagnetic resonance spectroscopy of cytochrome c and its heme-disrupted analogs. Bioelectrochemistry 119:136–141. https://doi.org/10.1016/j.bioelechem.2017.09.011
Alvarez-Dorta D, Thobie-Gautier C, Croyal M, Bouzelha M, Mével M, Deniaud D et al (2018) Electrochemically promoted tyrosine-click-chemistry for protein labeling. J Am Chem Soc 140(49):17120–17126. https://doi.org/10.1021/jacs.8b09372
Willwacher J, Raj R, Mohammed S, Davis BG (2016) Selective metal-site-guided arylation of proteins. J Am Chem Soc 138(28):8678–8681. https://doi.org/10.1021/jacs.6b04043
Song C, Liu K, Wang Z, Ding B, Wang S, Weng Y et al (2019) Electrochemical oxidation induced selective tyrosine bioconjugation for the modification of biomolecules. Chem Sci 10(34):7982–7987. https://doi.org/10.1039/C9SC02218J
Sierra T, Crevillen AG, Escarpa A (2017) Derivatization agents for electrochemical detection in amino acid, peptide and protein separations: the hidden electrochemistry? Electrophoresis 38(21):2695–2703. https://doi.org/10.1002/elps.201700167
Li G-D, Krull I, Cohen S (1996) Electrochemical activity of 6-aminoquinolyl urea derivatives of amino acids and peptides. Application to high-performance liquid chromatography with electrochemical detection. J Chromatogr A 724(1-2):147–157. https://doi.org/10.1016/0021-9673(95)00941-8
Pappa-Louisi A, Nikitas P, Agrafiotou P, Papageorgiou A (2007) Optimization of separation and detection of 6-aminoquinolyl derivatives of amino acids by using reversed-phase liquid chromatography with on line UV, fluorescence and electrochemical detection. Anal Chim Acta 593(1):92–97. https://doi.org/10.1016/j.aca.2007.04.044
Rose MJ, Lunte SM, Carlson RG, Stobaugh JF (1999) Hydroquinone-based derivatization reagents for the quantitation of amines using electrochemical detection. Anal Chem 71(11):2221–2230. https://doi.org/10.1021/ac981236c
Rose MJ, Lunte SM, Carlson RG, Stobaugh JF (2003) Amino acid and peptide analysis using derivatization with p-nitrophenol-2, 5-dihydroxyphenylacetate bis-tetrahydropyranyl ether and capillary electrophoresis with electrochemical detection. J Pharm Biomed Anal 30(6):1851–1859. https://doi.org/10.1016/s0731-7085(02)00528-9
Toyama E, Maruyama K, Sugai T, Kondo M, Masaoka S, Saitoh T et al (2019) Electrochemical tryptophan-selective bioconjugation. https://doi.org/10.26434/chemrxiv7795484
Li M, Zhu W, Marken F, James TD (2015) Electrochemical sensing using boronic acids. Chem Commun 51(78):14562–14573. https://doi.org/10.1039/C5CC04976H
Chien HC, Chou TC (2011) A nonenzymatic amperometric method for fructosyl-valine sensing using ferroceneboronic acid. Electroanalysis 23(2):402–408. https://doi.org/10.1002/elan.201000426
Xia N, Deng D, Zhang L, Yuan B, Jing M, Du J et al (2013) Sandwich-type electrochemical biosensor for glycoproteins detection based on dual-amplification of boronic acid-gold nanoparticles and dopamine-gold nanoparticles. Biosens Bioelectron 43:155–159. https://doi.org/10.1016/j.bios.2012.12.020
Billova S, Kizek R, Palecek E (2002) Differential pulse adsorptive stripping voltammetry of osmium-modified peptides. Bioelectrochemistry 56(1-2):63–66. https://doi.org/10.1016/S1567-5394(02)00008-7
Fojta M, Billova S, Havran L, Pivonkova H, Cernocka H, Horakova P et al (2008) Osmium tetroxide, 2, 2′-bipyridine: electroactive marker for probing accessibility of tryptophan residues in proteins. Anal Chem 80(12):4598–4605. https://doi.org/10.1021/ac800527u
Trefulka M, Dorcak V, Krenkova J, Foret F, Palecek E (2017) Electrochemical analysis of Os(VI)-modified glycoproteins and label-free glycoprotein detection eluted from lectin capillary column. Electrochim Acta 239:10–15. https://doi.org/10.1016/j.electacta.2017.04.045
Trefulka M, Palecek E (2014) Direct chemical modification and voltammetric detection of glycans in glycoproteins. Electrochem Commun 48:52–55. https://doi.org/10.1016/j.elecom.2014.08.011
Martic S, Labib M, Kraatz H-B (2011) Enzymatically modified peptide surfaces: towards general electrochemical sensor platform for protein kinase catalyzed phosphorylations. Analyst 136(1):107–112. https://doi.org/10.1039/C0AN00438C
Ramya M, Senthil Kumar P, Rangasamy G, Umashankar V, Rajesh G, Nirmala K et al (2022) A recent advancement on the applications of nanomaterials in electrochemical sensors and biosensors. Chemosphere 308: 136416. https://doi.org/10.1016/j.chemosphere.2022.136416
Mishra A, Bhatt R, Bajpai J, Bajpai AK (2021) Nanomaterials based biofuel cells: a review. Int J Hydrogen Energy 46(36):19085–19105. https://doi.org/10.1016/j.ijhydene.2021.03.024
Smutok O, Katz E (2023) Electroanalytical instrumentation—how it all started: history of electrochemical instrumentation. J Solid State Electrochem. https://doi.org/10.1007/s10008-023-05375-3
Palecek E, Fojta M (2007) Magnetic beads as versatile tools for electrochemical DNA and protein biosensing. Talanta 74(3):276–290. https://doi.org/10.1016/j.talanta.2007.08.020
Palecek E, Fojta M, Jelen F (2002) New approaches in the development of DNA sensors: hybridization and electrochemical detection of DNA and RNA at two different surfaces. Bioelectrochemistry 56:85–90. https://doi.org/10.1016/S1567-5394(02)00025-7
Palecek E, Postbieglova I (1986) Adsorptive stripping voltammetry of biomacromolecules with transfer of the adsorbed layer. J Electroanal Chem 214(1-2):359–371. https://doi.org/10.1016/0022-0728(86)80108-5
Palecek E, Kizek R, Havran L, Billova S, Fojta M (2002) Electrochemical enzyme-linked immunoassay in a DNA hybridization sensor. Anal Chim Acta 469(1):73–83. https://doi.org/10.1016/S0003-2670(01)01605-1
Wang J, Xu D, Erdem A, Polsky R, Salazar MA (2002) Genomagnetic electrochemical assays of DNA hybridization. Talanta 56(5):931–938. https://doi.org/10.1016/S0039-9140(01)00653-1
Vacek J, Mozga T, Cahova K, Pivonkova H, Fojta M (2007) Electrochemical sensing of chromium-induced DNA damage: DNA strand breakage by intermediates of chromium(VI) electrochemical reduction. Electroanalysis 19(19-20):2093–2102. https://doi.org/10.1002/elan.200703917
Masarik M, Cahova K, Kizek R, Palecek E, Fojta M (2007) Label-free voltammetric detection of single-nucleotide mismatches recognized by the protein MutS. Anal Bioanal Chem 388(1):259–270. https://doi.org/10.1007/s00216-007-1181-7
Palecek E, Masarik M, Kizek R, Kuhlmeier D, Hassmann J, Schulein J (2004) Sensitive electrochemical determination of unlabeled mutS protein and detection of point mutations in DNA. Anal Chem 76(19):5930–5936. https://doi.org/10.1021/ac049474x
Kawde AN, Rodriguez MC, Lee TMH, Wang J (2005) Label-free bioelectronic detection of aptamer-protein interactions. Electrochem Commun 7(5):537–540. https://doi.org/10.1016/j.elecom.2005.03.008
Matthew JB (1985) Electrostatic effects in proteins. Ann Rev Biophys Biophys Chem 14(1):387–417. https://doi.org/10.1146/annurev.bb.14.060185.002131
Park JW, Rhee YM (2016) Electric field keeps chromophore planar and produces high yield fluorescence in green fluorescent protein. J Am Chem Soc 138(41):13619–13629. https://doi.org/10.1021/jacs.6b06833
Henderson D, Boda D (2009) Insights from theory and simulation on the electrical double layer. Phys Chem Chem Phys 11(20):3822–3830. https://doi.org/10.1039/B815946G
Schönknecht T, Pörschke D (1996) Electrooptical analysis of α-chymotrypsin at physiological salt concentration. Biophys Chem 58(1):21–28. https://doi.org/10.1016/0301-4622(95)00082-8
Sinelnikova A, Mandl T, Agelii H, Grånäs O, Marklund EG, Caleman C et al (2021) Protein orientation in time-dependent electric fields: orientation before destruction. Biophys J 120(17):3709–3717. https://doi.org/10.1016/j.bpj.2021.07.017
Hekstra DR, White KI, Socolich MA, Henning RW, Srajer V, Ranganathan R (2016) Electric-field-stimulated protein mechanics. Nature 540(7633):400–405. https://doi.org/10.1038/nature20571
Fernandez-Diaz MD, Barsotti L, Dumay E, Cheftel JC (2000) Effects of pulsed electric fields on ovalbumin solutions and dialyzed egg white. J Agric Food Chem 48(6):2332–2339. https://doi.org/10.1021/jf9908796
Liu Y-Y, Zhang Y, Zeng X-A, El-Mashad H, Pan Z-L, Wang Q-J (2014) Effect of pulsed electric field on microstructure of some amino acid group of soy protein isolates. Int J Food Eng 10(1):113–120. https://doi.org/10.1515/ijfe-2013-0033
Wu L, Zhao W, Yang R, Chen X (2014) Effects of pulsed electric fields processing on stability of egg white proteins. J Food Eng 139:13–18. https://doi.org/10.1016/j.jfoodeng.2014.04.008
English NJ, Waldron CJ (2015) Perspectives on external electric fields in molecular simulation: progress, prospects and challenges. Phys Chem Chem Phys 17(19):12407–12440. https://doi.org/10.1039/C5CP00629E
Noble BB, Todorova N, Yarovsky I (2022) Electromagnetic bioeffects: a multiscale molecular simulation perspective. Phys Chem Chem Phys 24(11):6327–6348. https://doi.org/10.1039/D1CP05510K
Alizadeh H, Davoodi J, Rafii-Tabar H (2017) Deconstruction of the human connexin 26 hemichannel due to an applied electric field; a molecular dynamics simulation study. J Mol Graph Model 73:108–114. https://doi.org/10.1016/j.jmgm.2017.02.006
Marracino P, Havelka D, Prusa J, Liberti M, Tuszynski J, Ayoub AT et al (2019) Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci Rep 9(1):10477. https://doi.org/10.1038/s41598-019-46636-4
Wang J, Vanga SK, Raghavan V (2020) Structural responses of kiwifruit allergen Act d 2 to thermal and electric field stresses based on molecular dynamics simulations and experiments. Food Funct 11(2):1373–1384. https://doi.org/10.1039/C9FO02427A
Lugli F, Toschi F, Biscarini F, Zerbetto F (2010) Electric field effects on short fibrils of Aβ amyloid peptides. J Chem Theory Comput 6(11):3516–3526. https://doi.org/10.1021/ct1001335
Singh A, Orsat V, Raghavan V (2013) Soybean hydrophobic protein response to external electric field: a molecular modeling approach. Biomolecules 3(1):168–179. https://doi.org/10.3390/biom3010168
Todorova N, Bentvelzen A, Yarovsky I (2020) Electromagnetic field modulates aggregation propensity of amyloid peptides. J Chem Phys 152(3):035104. https://doi.org/10.1063/1.5126367
Astrakas L, Gousias C, Tzaphlidou M (2011) Electric field effects on chignolin conformation. J Appl Phys 109(9):094702. https://doi.org/10.1063/1.3585867
Prusa J, Cifra M (2019) Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor. Sci Rep 9(1):19721. https://doi.org/10.1038/s41598-019-56052-3
Marracino P, Apollonio F, Liberti M, d’Inzeo G, Amadei A (2013) Effect of high exogenous electric pulses on protein conformation: myoglobin as a case study. J Phys Chem B 117(8):2273–2279. https://doi.org/10.1021/jp309857b
Sinelnikova A, Mandl T, Östlin C, Grånäs O, Brodmerkel MN, Marklund EG et al (2021) Reproducibility in the unfolding process of protein induced by an external electric field. Chem Sci 12(6):2030–2038. https://doi.org/10.1039/D0SC06008A
Baumketner A (2014) Electric field as a disaggregating agent for amyloid fibrils. J Phys Chem B 118(50):14578–14589. https://doi.org/10.1021/jp509213f
Prusa J, Ayoub AT, Chafai DE, Havelka D, Cifra M (2021) Electro-opening of a microtubule lattice in silico. Comput Struct Biotechnol J 19:1488–1496. https://doi.org/10.1016/j.csbj.2021.02.007
English NJ, Mooney DA (2007) Denaturation of hen egg white lysozyme in electromagnetic fields: a molecular dynamics study. J Chem Phys 126(9). https://doi.org/10.1063/1.2515315
English NJ, Solomentsev GY, O'Brien P (2009) Nonequilibrium molecular dynamics study of electric and low-frequency microwave fields on hen egg white lysozyme. J Chem Phys 131(3):035106. https://doi.org/10.1063/1.3184794
Toschi F, Lugli F, Biscarini F, Zerbetto F (2009) Effects of electric field stress on a β-amyloid peptide. J Phys Chem B 113(1):369–376. https://doi.org/10.1021/jp807896g
Amadei A, Marracino P (2015) Theoretical-computational modelling of the electric field effects on protein unfolding thermodynamics. RSC Adv 5(117):96551–96561. https://doi.org/10.1039/c5ra15605j
Marracino P, Paffi A, d’Inzeo G (2022) A rationale for non-linear responses to strong electric fields in molecular dynamics simulations. Phys Chem Chem Phys 24(19):11654–11661. https://doi.org/10.1039/d1cp04466d
Marklund EG, Ekeberg T, Moog M, Benesch JLP, Caleman C (2017) Controlling protein orientation in vacuum using electric fields. J Phys Chem Lett 8(18):4540–4544. https://doi.org/10.1021/acs.jpclett.7b02005
Budi A, Legge FS, Treutlein H, Yarovsky I (2005) Electric field effects on insulin chain-B conformation. J Phys Chem B 109(47):22641–22648. https://doi.org/10.1021/jp052742q
della Valle E, Marracino P, Pakhomova O, Liberti M, Apollonio F (2019) Nanosecond pulsed electric signals can affect electrostatic environment of proteins below the threshold of conformational effects: the case study of SOD1 with a molecular simulation study. PLoS ONE 14(8):e0221685. https://doi.org/10.1371/journal.pone.0221685
Wang R, Wen QH, Zeng XA, Lin JW, Li J, Xu FY (2022) Binding affinity of curcumin to bovine serum albumin enhanced by pulsed electric field pretreatment. Food Chem 377:131945. https://doi.org/10.1016/j.foodchem.2021.131945
Sun WW, Yu SJ, Zeng XA, Yang XQ, Jia X (2011) Properties of whey protein isolate-dextran conjugate prepared using pulsed electric field. Food Res Int 44(4):1052–1058. https://doi.org/10.1016/j.foodres.2011.03.020
Zhao W, Yang R (2010) Experimental study on conformational changes of lysozyme in solution induced by pulsed electric field and thermal stresses. J Phys Chem B 114(1):503–510. https://doi.org/10.1021/jp9081189
Havelka D, Zhernov I, Teplan M, Lansky Z, Chafai DE, Cifra M (2022) Lab-on-chip microscope platform for electro-manipulation of a dense microtubules network. Sci Rep 12(1):2462. https://doi.org/10.1038/s41598-022-06255-y
Havelka D, Chafai DE, Krivosudsky O, Klebanovych A, Vostarek F, Kubinova L et al (2020) Nanosecond pulsed electric field lab-on-chip integrated in super-resolution microscope for cytoskeleton imaging. Adv Mater Technol 5(3):1900669. https://doi.org/10.1002/admt.201900669
Casciola M, Liberti M, Denzi A, Paffi A, Merla C, Apollonio F (2017) A computational design of a versatile microchamber for in vitro nanosecond pulsed electric fields experiments. Integration 58:446–453. https://doi.org/10.1016/j.vlsi.2017.03.005
Dalmay C, Villemejane J, Joubert V, Silve A, Arnaud-Cormos D, Français O et al (2011) A microfluidic biochip for the nanoporation of living cells. Biosens Bioelectron 26(12):4649–4655. https://doi.org/10.1016/j.bios.2011.03.020
Merla C, Liberti M, Marracino P, Muscat A, Azan A, Apollonio F et al (2018) A wide-band bio-chip for real-time optical detection of bioelectromagnetic interactions with cells. Sci Rep 8(1):5044. https://doi.org/10.1038/s41598-018-23301-w
Chafai DE, Vostarek F, Draberova E, Havelka D, Arnaud-Cormos D, Leveque P et al (2020) Microtubule cytoskeleton remodeling by nanosecond pulsed electric fields. Adv Biosyst 4(7):e2000070. https://doi.org/10.1002/adbi.202000070
Graybill PM, Davalos RV (2020) Cytoskeletal disruption after electroporation and its significance to pulsed electric field therapies. Cancers (Basel) 12(5):1132. https://doi.org/10.3390/cancers12051132
Dimova R, Riske KA, Aranda S, Bezlyepkina N, Knorr RL, Lipowsky R (2007) Giant vesicles in electric fields. Soft Matter 3(7):817–827. https://doi.org/10.1039/B703580B
Perrier DL, Vahid A, Kathavi V, Stam L, Rems L, Mulla Y et al (2019) Response of an actin network in vesicles under electric pulses. Sci Rep 9(1):8151. https://doi.org/10.1038/s41598-019-44613-5
Ho SY, Mittal GS, Cross JD (1997) Effects of high field electric pulses on the activity of selected enzymes. J Food Eng 31(1):69–84. https://doi.org/10.1016/S0260-8774(96)00052-0
Jin W, Wang Z, Peng D, Shen W, Zhu Z, Cheng S et al (2020) Effect of pulsed electric field on assembly structure of α-amylase and pectin electrostatic complexes. Food Hydrocolloids 101:105547. https://doi.org/10.1016/j.foodhyd.2019.105547
Rodrigues RM, Avelar Z, Machado L, Pereira RN, Vicente AA (2020) Electric field effects on proteins - novel perspectives on food and potential health implications. Food Res Int 137:109709. https://doi.org/10.1016/j.foodres.2020.109709
Armstrong FA (2002) Insight from protein film voltammetry into mechanism of complex biological electron-transfer reactions. Dalton Trans:661-671. https://doi.org/10.1039/B108359G
del Barrio M, Fourmond V (2019) Redox (in)activations of metalloenzymes: a protein film voltammetry approach. ChemElectroChem 6:4949–4962. https://doi.org/10.1002/celc.201901028
Gulaboski R, Lovric M, Mirceski V, Bogeski I, Hoth M (2008) Protein-film voltammetry: a theoretical study of the temperature effect using square-wave voltammetry. Biophys Chem 137:49–55. https://doi.org/10.1016/j.bpc.2008.06.011
Meyer T, Melin F, Xie H, von der Hocht I, Choi SK, Noor MR et al (2014) Evidence for distinct electron transfer processes in terminal oxidases from different origin by means of protein film voltammetry. J Am Chem Soc 136:10854–10857. https://doi.org/10.1021/ja505126v
Bostick CD, Mukhopadhyay S, Pecht I, Sheves M, Cahen D, Lederman D (2018) Protein bioelectronics: a review of what we do and do not know. Rep Prog Phys 81:26601. https://doi.org/10.1088/1361-6633/aa85f2
Leger C, Bertrand P (2008) Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem Rev 108:2379–2438. https://doi.org/10.1021/cr0680742
Gorton L, Lindgren A, Larsson T, Munteanu FD, Ruzgas T, Gazaryan I (1999) Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Anal Chim Acta 400:91–108. https://doi.org/10.1016/S0003-2670(99)00610-8
Cho I-H, Kim DH, Park S (2020) Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res 24:6. https://doi.org/10.1186/s40824-019-0181-y
Kornienko N, Ly KH, Robinson WE, Heidary N, Zhang JZ, Reisner E (2019) Advancing techniques for investigating the enzyme-electrode interface. Acc Chem Res 52:1439–1448. https://doi.org/10.1021/acs.accounts.9b00087
Szczesny J, Markovic N, Conzuelo F, Zacarias S, Pereira IAC, Lubitz W et al (2018) A gas breathing hydrogen/air biofuell cell comprising a redox polymer/hydrogenase-based bionanode. Nat Commun 9:4715. https://doi.org/10.1038/s41467-018-07137-6
Wong TS, Schwaneberg U (2003) Protein engineering in bioelectrocatalysis. Curr Opin Biotechnol 14:590–596. https://doi.org/10.1016/j.copbio.2003.09.008
Ha TQ, Planje IJ, White JRG, Aragones AC, Diez-Perez I (2021) Charge transport at the protein-electrode interface in the emerging field of biomolecular electronics. Curr Opin Electrochem 28:100734. https://doi.org/10.1016/j.coelec.2021.100734
Kayser B, Fereiro JA, Guo C, Cohen SR, Sheves M, Pecht I et al (2018) Transistor configuration yields energy level control in protein-based junctions. Nanoscale 10:21712–21720. https://doi.org/10.1039/C8NR06627B
Lee T, Kim S, Kim J, Park S-C, Yoon J, Park C et al (2020) Recent advances in biomolecule-nanomaterial heterolayer-based charge storage devices for bioelectronic applications. Materials 13:3520. https://doi.org/10.3390/ma13163520
Zhang L, Lu JR, Waigh TA (2021) Electronics of peptide- and protein-based biomaterials. Adv Colloid Interface Sci 287:102319. https://doi.org/10.1016/j.cis.2020.102319
Cahen D, Pecht I, Sheves M (2021) What can we learn from protein-based electron transport junctions? J Phys Chem Lett 12:11598–11603. https://doi.org/10.1021/acs.jpclett.1c02446
Kumar KS, Pasula RR, Lim S, Nijhuis CA (2016) Long-range tunneling processes across ferritin-based junctions. Adv Mater 28:1824–1830. https://doi.org/10.1002/adma.201504402
Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. I. J Chem Phys 24(5):966–978. https://doi.org/10.1063/1.1742723
Marcus RA (1956) Electrostatic free energy and other properties of states having nonequilibrium polarization. I. J Chem Phys 24(5):979–989. https://doi.org/10.1063/1.1742724
Artes JM, Diez-Perez I, Sanz F, Gorostiza P (2011) Direct measurement of electron transfer distance decay constants of single redox proteins by electrochemical tunneling spectroscopy. ACS Nano 5:2060–2066. https://doi.org/10.1021/nn103236e
Elliott M, Jones DD (2018) Approaches to single-molecule studies of metalloprotein electron transfer using scanning probe-based techniques. Biochem Soc Trans 46:1–9. https://doi.org/10.1042/BST20170229
Nazmutdinov RR, Zinkicheva TT, Shermukhamedov SA, Zhang J, Ulstrup J (2018) Electrochemistry of single molecules and biomolecules, molecular scale nanostructures, and low-dimensional systems. Curr Opin Electrochem 7:179–187. https://doi.org/10.1016/j.coelec.2017.11.013
Salvatore P, Zeng D, Karlsen KK, Chi Q, Wengel J, Ulstrup J (2013) Electrochemistry of single metalloprotein and DNA-based molecules at Au(111) electrode surfaces. ChemPhysChem 14:2101–2111. https://doi.org/10.1002/cphc.201300299
Garg K, Ghosh M, Eliash T, van Wonderen JH, Butt JN, Shi L et al (2018) Direct evidence for heme-assisted solid-state electronic conduction in multi-heme c-type cytochromes. Chem Sci 9:7304–7310. https://doi.org/10.1039/C8SC01716F
Agam Y, Nandi R, Kaushansky A, Peskin U, Amdursky N (2020) The porphyrin ring rather than the metal ion dictates long-range electron transport across proteins suggesting coherence-assisted mechanism. Proc Nat Acad Sci USA 117:32260–32266. https://doi.org/10.1073/pnas.2008741117
Zhang B, Song W, Brown J, Nemanich R, Lindsay S (2020) Electronic conductance resonance in non-redox-active proteins. J Am Chem Soc 142:6432–6438. https://doi.org/10.1021/jacs.0c01805
Hitaishi VP, Clement R, Bourassin N, Baaden M, de Poulpiquet A, Sacquin-Mora S et al (2018) Controlling redox enzyme orientation at planar electrodes. Catal 8:192. https://doi.org/10.3390/catal8050192
Mazurenko I, Hitaischi VP, Lojou E (2020) Recent advances in surface chemistry of electrodes to promote direct enzymatic bioelectrocatalysis. Curr Opin Electrochem 19:113–121. https://doi.org/10.1016/j.coelec.2019.11.004
Biriukov D, Futera Z (2021) Adsorption of amino acids at the gold/aqueous interface: effect of an external electric field. J Phys Chem C 125:7856–7867. https://doi.org/10.1021/acs.jpcc.0c11248
Feng J, Slocik JM, Sarikaya M, Naik RR, Farmer BL, Heinz H (2012) Influence of the shape of nanostructured metal surfaces on adsorption of single peptide molecules in aqueous solution. Small 8(7):1049–1059. https://doi.org/10.1002/smll.201102066
Futera Z (2021) Amino-acid interactions with the Au(111) surface: adsorption, band alignment, and interfacial electronic coupling. Phys Chem Chem Phys 23:10257–10266. https://doi.org/10.1039/D1CP00218J
Futera Z, Blumberger J (2019) Adsorption of amino acids on gold: assessing the accuracy of the GolP-CHARMM force field and parametrization of Au-S bonds. J Chem Theory Comput 15:613–624. https://doi.org/10.1021/acs.jctc.8b00992
Hoefling M, Iori F, Corni S, Gottschalk K-E (2010) Interaction of amino acids with the Au(111) surface: adsorption free energies from molecular dynamics simulations. Langmuir 26(11):8347–8351. https://doi.org/10.1021/la904765u
Iori F, Di Felice R, Molinari E, Corni S (2009) GoIP: an atomistic force-field to describe the interaction of proteins with Au(111) surfaces in water. J Comput Chem 30:1465–1476. https://doi.org/10.1002/jcc.21165
Wright LB, Rodger PM, Corni S, Walsh TR (2013) GoIP-CHARMM: first-principles based force fields for the interaction of proteins with Au(111) and Au(100). J Chem Theory Comput 9:1616–1630. https://doi.org/10.1021/ct301018m
Wright LB, Rodger PM, Walsh TR, Corni S (2013) First-principle-based force field for the interaction of proteins with Au(100)(5x1): an extension of GolP-CHARMM. J Phys Chem C 117:24292–24306. https://doi.org/10.1021/jp4061329
Brusatori MA, Tie Y, Van Tassel PR (2003) Protein adsorption kinetics under an applied electric field: an optical waveguide lightmode spectroscopy study. Langmuir 19:5089–5097. https://doi.org/10.1021/la0269558
Mulheran PA, Connell DJ, Kubiak-Ossowska K (2016) Steering protein adsorption at charged surfaces: electric fields and ionic screening. RSC Adv 6:73709–73716. https://doi.org/10.1039/C6RA16391B
Xie Y, Liao C, Zhou J (2013) Effects of external electric fields on lysozyme adsorption by molecular dynamics simulations. Biophys Chem 179:26–34. https://doi.org/10.1016/j.bpc.2013.05.002
Amadei A, Daidone I, Bortolotti CA (2013) A general statistical mechanical approach for modeling redox thermodynamics: the reaction and reorganization free energies. RSC Adv 3:19657–19665. https://doi.org/10.1039/C3RA42842G
Blumberger J (2008) Free energies for biological electron transfer from QM/MM calculation: method, application and critical assessment. Phys Chem Chem Phys 10:5651–5667. https://doi.org/10.1039/B807444E
Daidone I, Amadei A, Zaccanti F, Borsari M, Bortolotti CA (2014) How the reorganization free energy affects the reduction potential of structurally homologous cytochromes. J Phys Chem Lett 5:1534–1540. https://doi.org/10.1021/jz5005208
Jiang X, Futera Z, Blumberger J (2019) Ergodicity-breaking in thermal biological electron transfer? Cytochrome C Revisited. J Phys Chem B 123:7588–7598. https://doi.org/10.1021/acs.jpcb.9b05253
Kontkanen OV, Biriukov D, Futera Z (2022) Reorganization free energy of copper proteins in solution, in vacuum, and on metal surfaces. J Chem Phys 156:175101. https://doi.org/10.1063/5.0085141
Tipmanee V, Oberhofer H, Park M, Kim KS, Blumberger J (2010) Prediction of reorganization free energies for biological electron transfer: a comparative study of ru-modified cytochromes and a 4-helix bundle protein. J Am Chem Soc 132:17032–17040. https://doi.org/10.1021/ja107876p
Cave RJ, Newton MD (1996) Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements. Chem Phys Lett 249:15–19. https://doi.org/10.1016/0009-2614(95)01310-5
Cave RJ, Newton MD (1997) Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: comparison of the generalized Mulliken-Hush and block diagonalization methods. J Chem Phys 106:9213–9226. https://doi.org/10.1063/1.474023
Hsu C-P (2009) The electronic couplings in electron transfer and excitation energy transfer. Acc Chem Res 42:509–518. https://doi.org/10.1021/ar800153f
Voityuk AA, Rosch N (2002) Quantum chemical modeling of electron hole transfer through pi stacks of normal and modified pairs of nucleobases. J Phys Chem B 106:3013–3018. https://doi.org/10.1021/jp013417f
Oberhofer H, Blumberger J (2010) Insight into the mechanism of the Ru2+-Ru3+ electron self-exhchange reaction from quantitative rate calculations. Angew Chem Int Ed 49:3631–3634. https://doi.org/10.1002/anie.200906455
Senthilkumar K, Grozema FC, Bickelhaupt FM, Siebbeles LDA (2003) Charge transport in columnar stacked triphenylenes: effects of conformational fluctuations on charge transfer integrals and site energies. J Chem Phys 119(18):9809–9817. https://doi.org/10.1063/1.1615476
Gillet N, Berstis L, Wu X, Gajdos F, Heck A, de la Lande A et al (2016) Electronic coupling calculations for bridge-mediated charge transfer using constrained density functional theory (CDFT) and effective Hamiltonian approaches at the density functional theory (DFT) and fragment-orbital density functional tight binding (FODFTB) level. J Chem Theory Comput 12:4793–4805. https://doi.org/10.1021/acs.jctc.6b00564
Oberhofer H, Blumberger J (2010) Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set. J Chem Phys 133:244105. https://doi.org/10.1063/1.3507878
Wu Q, Van Voorhis T (2006) Extracting electron transfer coupling elements from constrained density functional theory. J Chem Phys 125:164105. https://doi.org/10.1063/1.2360263
Wu Q, Van Voorhis T (2006) Direct calculation of electron transfer parameters through constrained density functional theory. J Phys Chem A 110:9212–9218. https://doi.org/10.1021/jp061848y
Futera Z, Blumberger J (2017) Electronic couplings for charge transfer across molecule/metal and molecule/semiconductor interfaces: performance of the projector operator-based diabatization approach. J Phys Chem C 121:19677–19689. https://doi.org/10.1021/acs.jpcc.7b06566
Ghan S, Kunkel C, Reuter K, Oberhofer H (2020) Improved projection-operator diabatization schemes for the calculation of electronic coupling values. J Chem Theory Comput 16:7431–7443. https://doi.org/10.1021/acs.jctc.0c00887
Kondov I, Cizek M, Benesch C, Wang H, Thoss M (2007) Quantum dynamics of photoinduced electron-transfer reactions in dye-semiconductor systems: first-principles description and application to coumarin 343-TiO2. J Phys Chem C 111:11970–11981. https://doi.org/10.1021/jp072217m
Ziogos OG, Blumberger J (2021) Ultrafast estimation of electronic couplings for electron transfer between pi-conjugated organic molecules. II. J Chem Phys 155:244110. https://doi.org/10.1063/5.0076555
Henstridge MC, Laborda E, Rees NV, Compton RG (2012) Marcus-Hush-Chidsey theory of electron transfer applied to voltammetry: a review. Electrochim Acta 84:12–20. https://doi.org/10.1016/j.electacta.2011.10.026
Chidsey CED (1991) Free energy and temperature dependence of electron transfer at the metal-electrolyte interface. Science 251(4996):919–922. https://doi.org/10.1126/science.251.4996.919
Breuer M, Rosso KM, Blumberger J (2014) Electron flow in multiheme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials. Proc Nat Acad Sci USA 111(2):611–616. https://doi.org/10.1073/pnas.1316156111
Byun HS, Pirbadian S, Nakano A, Shi L, El-Naggar MY (2014) Kinetic Monte Carlo simulations and molecular conductance measurements of the bacterial decaheme cytochrome MtrF. ChemElectroChem 1(11):1932–1939. https://doi.org/10.1002/celc.201402211
Polizzi NF, Skourtis SS, Beratan DN (2012) Physical constraints on charge transport through bacterial nanowires. Faraday Discuss 155:43–61. https://doi.org/10.1039/C1FD00098E
Cuevas JC, Scheer E (2017) Molecular electronics: an introduction to theory and experiment. World Scientific Publishing
Datta S (1995) Electronic Transport in Mesoscopic Systems. Cambridge University Press
Landauer R (1989) Conductance determined by transmission: probes and quantised constriction resistance. J Phys: Condens Matter 1:8099–8110. https://doi.org/10.1088/0953-8984/1/43/011
Papior N, Lorente N, Frederiksen T, Garcia A, Brandbyge M (2017) Improvements on non-equilibrium and transport green function techniques: the next-generation transiesta. Comp Phys Comm 212:8–24. https://doi.org/10.1016/j.cpc.2016.09.022
Romero-Muniz C, Ortega M, Vilhena JG, Diez-Perez I, Perez R, Cuevas JC et al (2021) Can electron transport through a blue-copper azurin be coherent? An ab initio study. J Phys Chem C 125:1693–1702. https://doi.org/10.1021/acs.jpcc.0c09364
Futera Z, Ide I, Kayser B, Garg K, Jiang X, van Wonderen JH et al (2020) Coherent electron transport across a 3 nm bioelectronic junction made of multi-heme proteins. J Phys Chem Lett 11:9766–9774. https://doi.org/10.1021/acs.jpclett.0c02686
Futera Z, Wu X, Blumberger J (2023) Tunneling-to-hopping transition in multiheme cytochrome bioelectronic junctions. J Phys Chem Lett 14:445–452. https://doi.org/10.1021/acs.jpclett.2c03361
Carey R, Chen L, Gu B, Franco I (2017) When can time-dependent currents be reproduced by the Landauer steady-state approximation? J Chem Phys 146:174101. https://doi.org/10.1063/1.4981915
Nitzan A (2014) Chemical dynamics in condensed phases: relaxation, transfer, and reactions in condensed molecular systems. Oxford University Press
Valianti S, Cuevas J-C, Skourtis SS (2019) Charge-transport mechanism in azurin-based monolayer junctions. J Phys Chem C 123:5907–5922. https://doi.org/10.1021/acs.jpcc.9b00135
Egger DA, Liu Z-F, Neaton JB, Kronik L (2015) Reliable energy level alignment at physisorbed molecule-metal interfaces from density functional theory. Nano Lett 15:2448–2455. https://doi.org/10.1021/nl504863r
Neaton JB, Hybertsen MS, Louie SG (2006) Renormalization of molecular electronic levels at metal-molecule interfaces. Phys Rev Lett 97:216405. https://doi.org/10.1103/PhysRevLett.97.216405
Biava H, Schreiber T, Katz S, Voller J-S, Stolarski M, Schulz C et al (2018) Long-range modulations of the electric fields in proteins. J Phys Chem B 122:8330–8342. https://doi.org/10.1021/acs.jpcb.8b03870
Bim D, Alexandrova AN (2021) Electrostatic regulation of blue copper sites. Chem Sci 12:11406–11413. https://doi.org/10.1039/D1SC02233D
Bradshaw RT, Dziedzic J, Skylaris C-K, Essex JW (2020) The role of electrostatics in enzymes: do biomolecular force fields reflect protein electric fields? J Chem Info Model 60:3131–3144. https://doi.org/10.1021/acs.jcim.0c00217
Stuyver T, Ramanan R, Mallick D, Shaik S (2020) Oriented (local) electric fields drive the millionfold enhancement of the H-abstraction catalysis observed for synthetic metalloenzyme analogues. Angew Chem Int Ed 59:7915–7920. https://doi.org/10.1002/anie.201916592
Suydam IT, Snow CD, Pande VS, Boxer SG (2006) Electric fields at the active site of an enzyme: direct comparison of experiment with theory. Science 313:200–204. https://doi.org/10.1126/science.1127159
Htwe EE, Nakama Y, Yamamoto Y, Tanaka H, Imanaka H, Ishida N et al (2018) Adsorption characteristics of various proteins on a metal surface in the presence of an external electric potential. Colloid Surf B 166:262–268. https://doi.org/10.1016/j.colsurfb.2018.03.035
Martin LJ, Akhavan B, Bilek MMM (2018) Electric fields control the orientation of peptides irreversibly immobilized on radical-functionalized surfaces. Nat Comm 9:357. https://doi.org/10.1038/s41467-017-02545-6
Lakshmi S, Dutta S, Pati SK (2008) Molecular electronics: effect of external electric field. J Phys Chem C 112:14718–14730. https://doi.org/10.1021/jp800187e
De Renzi V, Rousseau R, Marchetto D, Biagi a, Scandolo S, del Pennino U. (2005) Metal work-function changes induced by organic adsorbates: a combined experimental and theoretical study. Phys Rev Lett 95:46804. https://doi.org/10.1103/PhysRevLett.95.046804
Derry GN, Kern ME, Worth EH (2015) Recommended values of clean metal surface work functions. J Vac Sci Technol A 33:60801. https://doi.org/10.1116/1.4934685
Amdursky N, Ferber D, Bortolotti CA, Dolgikh DA, Chertkova RV, Pecht I et al (2014) Solid-state electron transport via cytochrome c depends on electronic coupling to electrodes and across the protein. Proc Nat Acad Sci USA 111:5556–5561. https://doi.org/10.1073/pnas.1319351111
Casalini S, Berto M, Kovtun A, Operamolla A, Di Rocco G, Facci P et al (2015) Surface immobilized his-tagged azurin as a model interface for the investigation of vectorial electron transfer in biological systems. Electrochim Acta 178:638–646. https://doi.org/10.1016/j.electacta.2015.07.156
Zanetti-Polzi L, Daidone I, Bortolotti CA, Corni S (2014) Surface packing determines the redox potential shift of cytochrome c adsorbed on gold. J Am Chem Soc 136:12929–12937. https://doi.org/10.1021/ja505251a
Jensen PS, Chi Q, Grumsen FB, Abad JM, Horsewell A, Schiffrin DJ et al (2007) Gold nanoparticle assisted assembly of a heme protein for enhancement of long-range interfacial electron transfer. J Phys Chem C 111:6124–6132. https://doi.org/10.1021/jp068453z
Liu S, Vareiro MMLM, Fraser S, Jenkins ATA (2005) Control of attachment of bovine serum albumin to pulse plasma-polymerized maleic anhydride by variation of pulse conditions. Langmuir 21:8572–8575. https://doi.org/10.1021/la051449e
Onoda A, Taniguchi T, Inoue N, Kamii A, Hayashi T (2016) Anchoring cytochrome b562 on a gold nanoparticle by a heme-heme pocket interaction. Eur J Inorg Chem:3454-9. https://doi.org/10.1002/ejic.201600301
Wieland F, Bruch R, Bergmann M, Partel S, Urban GA, Dincer C (2020) Enhanced protein immobilization on polymers - a plasma surface activation study. Polymers 12:104. https://doi.org/10.3390/polym12010104
Vacek J, Zatloukalova M, Kabelac M (2022) Redox biology and electrochemistry. Towards evaluation of bioactive electron donors and acceptors. Curr Opin. Electrochem 36:101142. https://doi.org/10.1016/j.coelec.2022.101142
West RM, Janata J (2020) Praise of mercury. J Electroanal Chem 858:113773. https://doi.org/10.1016/j.jelechem.2019.113773
Dorcak V, Kabelac M, Kroutil O, Bednarova K, Vacek J (2016) Electrocatalytic monitoring of peptidic proton-wires. Analyst 141(15):4554–4557. https://doi.org/10.1039/c6an00869k
Dorcak V, Novak D, Kabelac M, Kroutil O, Bednarova L, Veverka V et al (2018) Structural stability of peptidic His-containing proton wire in solution and in the adsorbed state. Langmuir 34(24):6997–7005. https://doi.org/10.1021/acs.langmuir.7b04139
Kroutil O, Kabelac M, Dorcak V, Vacek J (2019) Structures of peptidic H-wires at mercury surface: molecular dynamics study. Electroanalysis 31(10):2032–2040. https://doi.org/10.1002/elan.201900314
Murgida DH (2021) In situ spectroelectrochemical investigations of electrode-confined electron-transferring proteins and redox enzymes. ACS Omega 6(5):3435–3446. https://doi.org/10.1021/acsomega.0c05746
Miao P, Wang B, Han K, Tang Y (2014) Electrochemical impedance spectroscopy study of proteolysis using unmodified gold nanoparticles. Electrochem Commun 47:21–24. https://doi.org/10.1016/j.elecom.2014.07.013
Holtz B, Wang Y, Zhu X-Y, Guo A (2007) Denaturing and refolding of protein molecules on surfaces. Proteomics 7(11):1771–1774. https://doi.org/10.1002/pmic.200700053