Electrochemiluminescence on digital microfluidics for microRNA analysis

Biosensors and Bioelectronics - Tập 77 - Trang 845-852 - 2016
Mohtashim H. Shamsi1,2, Kihwan Choi1,2, Alphonsus H.C. Ng1,2,3, M. Dean Chamberlain1,2, Aaron R. Wheeler1,2,3
1Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, Canada M5S 3H6
2Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, ON, Canada M5S 3E1
3Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, Canada M5S 3G9

Tài liệu tham khảo

Arora, 2001, A Wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device, Anal. Chem., 73, 3282, 10.1021/ac0100300 Au, 2011, A New angle on pluronic additives: advancing droplets and understanding in digital microfluidics, Langmuir, 27, 8586, 10.1021/la201185c Azimi, M., Silverbrook, K., Moini, A., 2011. Microfluidic device for detection of nucleic acid targets with electrochemiluminescent probes. US 20110312642. Calin, 2006, MicroRNA signatures in human cancers, Nat. Rev. Cancer, 6, 857, 10.1038/nrc1997 Cao, 2002, New technique for capillary electrophoresis directly coupled with end‐column electrochemiluminescence detection, Electrophoresis, 23, 3683, 10.1002/1522-2683(200211)23:21<3683::AID-ELPS3683>3.0.CO;2-F Chen, 2012, In situ hybridization chain reaction amplification for universal and highly sensitive electrochemiluminescent detection of DNA, Anal. Chem., 84, 7750, 10.1021/ac3012285 Chiang, 2001, Tris(2,2’-bipyridyl)ruthenium(III)-based electrochemiluminescence detector with indium/tin oxide working electrode for capillary electrophoresis, J. Chromatogr. A, 934, 59, 10.1016/S0021-9673(01)01279-1 Choi, 2013, Automated digital microfluidic platform for magnetic-particle-based immunoassays with optimization by design of experiments, Anal. Chem., 85, 9638, 10.1021/ac401847x Choi, 2015, A Guiding Light: Spectroscopy on Digital Microfluidic Devices Using in-Plane Optical Fibre Waveguides, Anal. Bioanal. Chem., 407, 7467, 10.1007/s00216-015-8913-x Choi, 2012, Digital microfluidics, Annu. Rev. Anal. Chem., 5, 413, 10.1146/annurev-anchem-062011-143028 Delaney, 2011, Electrogenerated chemiluminescence detection in paper-based microfluidic sensors, Anal. Chem., 83, 1300, 10.1021/ac102392t Dryden, 2013, Integrated digital microfluidic platform for voltammetric analysis, Anal. Chem., 85, 8809, 10.1021/ac402003v Dryden, 2015, DStat: a versatile, open-source potentiostat for electroanalysis and integration, PLoS One, 10.1371/journal.pone.0140349 Fobel, 2013, DropBot: an open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement, Appl. Phys. Lett., 102, 1, 10.1063/1.4807118 Foudeh, 2015, Rapid and multiplex detection of Legionella's RNA using digital microfluidics, Lab Chip, 15, 1609, 10.1039/C4LC01468E Ge, 2012, Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing, Biomaterials, 33, 1024, 10.1016/j.biomaterials.2011.10.065 Guan, 2016, Electrochemiluminescence detection in microfluidic cloth-based analytical devices, Biosens. Bioelectron., 75, 247, 10.1016/j.bios.2015.08.023 Hsueh, 1998, DNA quantification with an electrochemiluminescence microcell, Sens. Actuators B: Chem., 49, 1, 10.1016/S0925-4005(98)00105-1 Hsueh, 1996, A microfabricated, electrochemiluminescence cell for the detection of amplified DNA, Sens. Actuators B: Chem., 33, 110, 10.1016/0925-4005(96)01933-8 Hu, 2010, Applications and trends in electrochemiluminescence, Chem. Soc. Rev., 39, 3275, 10.1039/b923679c Jebrail, 2014, World-to-digital-microfluidic interface enabling extraction and purification of RNA from human whole blood, Anal. Chem., 86, 3856, 10.1021/ac404085p Kasahara, 2014, Multi-color microfluidic electrochemiluminescence cells, Sens. Actuators A: Physical, 214, 225, 10.1016/j.sna.2014.04.039 Kokalj, 2015, Building bio-assays with magnetic particles on a digital microfluidic platform, New Biotechnol., 32, 485, 10.1016/j.nbt.2015.03.007 Labib, 2015, Electrochemical sensing of microRNAs: Avenues and paradigms, Biosens. Bioelectron., 68, 83, 10.1016/j.bios.2014.12.026 Lafrenière, 2014, Multiplexed extraction and quantitative analysis of pharmaceuticals from DBS samples using digital microfluidics, Bioanalysis, 6, 307, 10.4155/bio.13.311 Li, 2013, Label-free electrogenerated chemiluminescence biosensing method for trace bleomycin detection based on a Ru (phen)32+ hairpin DNA composite film electrode, Biosens. Bioelectron., 44, 177, 10.1016/j.bios.2012.12.060 Liu, 2011, A sensitive, non-damaging electrochemiluminescent aptasensor via a low potential approach at DNA-modified gold electrodes, Analyst, 136, 479, 10.1039/C0AN00607F Liu, 2015, Open bipolar electrode-electrochemiluminescence imaging sensing using paper-based microfluidics, Sens. Actuators B: Chem., 216, 255, 10.1016/j.snb.2015.04.014 Mani, 2013, Paper-based electrochemiluminescent screening for genotoxic activity in the environment, Environ. Sci. Technol., 47, 1937, 10.1021/es304426j Miao, 2008, Electrogenerated chemiluminescence and its biorelated applications, Chem. Rev., 108, 2506, 10.1021/cr068083a Miao, 2002, Electrogenerated Chemiluminescence 69: The Tris(2,2‘-bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) System RevisitedA New Route Involving TPrA•+ Cation Radicals, J. Am. Chem. Soc., 124, 14478, 10.1021/ja027532v Mirasoli, 2014, Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis, J. Pharm. Biomed. Anal., 87, 36, 10.1016/j.jpba.2013.07.008 Muzyka, 2014, Current trends in the development of the electrochemiluminescent immunosensors, Biosens. Bioelectron., 54, 393, 10.1016/j.bios.2013.11.011 Nepomnyashchii, 2006 Ng, 2012, Digital microfluidic magnetic separation for particle-based immunoassays, Anal. Chem., 84, 8805, 10.1021/ac3020627 Ng, 2015, Digital microfluidic platform for the detection of rubella infection and immunity: a proof of concept, Clin. Chem., 61, 420, 10.1373/clinchem.2014.232181 Ng, 2009, MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer, Br. J. Cancer, 101, 699, 10.1038/sj.bjc.6605195 Parveen, 2013 Rackus, 2015, Electrochemistry, biosensors and microfluidics: a convergence of fields, Chem. Soc. Rev., 44, 5320, 10.1039/C4CS00369A Radha, 2007, ECL—Electrochemical luminescence, Annu. Rep. Section “C” (Physical Chemistry), 103, 12, 10.1039/B605635K Redha, 2009, Hybrid microfluidic sensors fabricated by screen printing and injection molding for electrochemical and electrochemiluminescence detection, Electroanalysis, 21, 422, 10.1002/elan.200804415 Richter, 2004, Electrochemiluminescence (ECL), Chem. Rev., 104, 3003, 10.1021/cr020373d Robert, 2009, Electrogenerated Chemiluminescence, Annu. Rev. Anal. Chem., 2, 359, 10.1146/annurev-anchem-060908-155305 Sardesai, 2011, Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins, Anal. Chem., 83, 6698, 10.1021/ac201292q Sardesai, 2013, A microfluidic electrochemiluminescent device for detecting cancer biomarker proteins, Anal. Bioanal. Chem., 405, 3831, 10.1007/s00216-012-6656-5 Shamsi, 2013, Interactions of metal ions with DNA and some applications, J. Inorg. Organomet. Polym., 23, 4, 10.1007/s10904-012-9694-8 Shamsi, 2014, A digital microfluidic electrochemical immunoassay, Lab on a chip, 14, 547, 10.1039/C3LC51063H Shamsi, 2011, Electrochemical identification of artificial oligonucleotides related to bovine species. Potential for identification of species based on mismatches in the mitochondrial cytochrome C1 oxidase gene, Analyst, 136, 4724, 10.1039/c1an15414a Silverbrook, K., Azimi, M., Facer, G.R., 2011. Microfluidic device for PCR, probe hybridization and electrochemiluminescent detection of probe-target hybrids. US 20110312655. Skotty, 1996, Determination of dansyl amino acids and oxalate by HPLC with electrogenerated chemiluminescence detection using tris (2, 2′-bipyridyl) ruthenium (II) in the mobile Phase, Anal. Chem., 68, 1530, 10.1021/ac951087n Tokel-Takvoryan, 1973, Electrogenerated chemiluminescence. XIII. Electrochemical and electrogenerated chemiluminescence studies of ruthenium chelates, J. Am. Chem. Soc., 95, 6582, 10.1021/ja00801a011 Tsaloglou, 2014, A fluorogenic heterogeneous immunoassay for cardiac muscle troponin cTnI on a digital microfluidic device, Anal. Bioanal. Chem., 406, 5967, 10.1007/s00216-014-7997-z Turchinovich, 2011, Characterization of extracellular circulating microRNA, Nucleic Acids Res., 39, 7223, 10.1093/nar/gkr254 Wang, 2012, Battery-triggered microfluidic paper-based multiplex electrochemiluminescence immunodevice based on potential-resolution strategy, Lab on a chip, 12, 4489, 10.1039/c2lc40707h Weigel, 2010, In vitro effects of imatinib mesylate on radiosensitivity and chemosensitivity of breast cancer cells, BMC Cancer, 10, 412, 10.1186/1471-2407-10-412 Welch, 2011, Picoliter DNA sequencing chemistry on an electrowetting‐based digital microfluidic platform, Biotechnol. J., 6, 165, 10.1002/biot.201000324 Woolley, 2015, ABC Spotlight on emerging microRNA analysis methods, Anal. Bioanal. Chem., 407, 6579, 10.1007/s00216-015-8808-x Wu, 2015, Visual Electrochemiluminescence detection of cancer biomarkers on a closed bipolar electrode array chip, Anal. Chem., 87, 530, 10.1021/ac502989f Xu, 1995, Immobilization and hybridization of DNA on an aluminum (III) alkanebisphosphonate thin film with electrogenerated chemiluminescent detection, J. Am. Chem. Soc., 117, 2627, 10.1021/ja00114a027 Yan, 2013, A microfluidic origami electrochemiluminescence aptamer-device based on a porous Au-paper electrode and a phenyleneethynylene derivative, Chem. Commun., 49, 1383, 10.1039/C2CC37402A Yin, 2004, Analytical applications of the electrochemiluminescence of tris (2,2′-bipyridyl) ruthenium and its derivatives, TrAC Trends Anal. Chem., 23, 432, 10.1016/S0165-9936(04)00603-X Yin, 2009, Label-Free electrochemiluminescent aptasensor with attomolar mass detection limits based on a Ru(phen)32+-double-strand DNA composite film electrode, Anal. Chem., 81, 9299, 10.1021/ac901609g Zhang, 2013, Multiplexed sandwich immunoassays using flow-injection electrochemiluminescence with designed substrate spatial-resolved technique for detection of tumor markers, Biosens. Bioelectron., 41, 684, 10.1016/j.bios.2012.09.044