Electrochemically active MnO2 coated Li1.2Ni0.18Co0.04Mn0.58O2 cathode with highly improved initial coulombic efficiency
Tài liệu tham khảo
Yu, 2013, High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries, J. Phys. Chem Lett., 4, 1268, 10.1021/jz400032v
Zheng, 2015, Structural and chemical evolution of Li- and Mn-rich layered cathode material, Chem. Mater., 27, 1381, 10.1021/cm5045978
Shunmugasundaram, 2015, High capacity Li-rich positive electrode materials with reduced first-cycle irreversible capacity loss, Chem. Mater., 27, 757, 10.1021/cm504583y
Whittingham, 2004, Lithium batteries and cathode materials, Chem. Rev., 104, 4271, 10.1021/cr020731c
Boulineau, 2013, First evidence of Manganese–Nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries, Nano Lett., 13, 3857, 10.1021/nl4019275
Kang, 2008, Stabilization of xLi2MnO3⋅(1-x)LiMO2 electrode surfaces (M=Mn, Ni, Co) with mildly acidic, fluorinated solutions, J. Electrochem. Soc., 155, A269, 10.1149/1.2834904
Armstrong, 2006, Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2, J. Am. Chem. Soc., 128, 8694, 10.1021/ja062027+
Jeom-Soo, 2004, Electrochemical and structural properties of xLi2M'O3·1-x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M'=Ti, Mn Zr; 0 les x les 0.3), Chem. Mat., 16, 1996, 10.1021/cm0306461
Koga, 2013, Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2, J. Electrochem. Soc., 160, A786, 10.1149/2.038306jes
Koga, 2012, Li1.20Mn0.54Co0.13Ni0.13O2 with different particle sizes as attractive positive electrode materials for lithium-Ion batteries: insights into their structure, J. Phys. Chem. C, 116, 13497, 10.1021/jp301879x
McCalla, 2013, How phase transformations during cooling affect Li-Mn-Ni-O positive electrodes in lithium ion batteries, J. Electrochem. Soc., 160, A1134, 10.1149/2.047308jes
McCalla, 2013, Structural study of the Li–Mn–Ni oxide pseudoternary system of interest for positive electrodes of Li-ion batteries, Chem. Mater., 25, 989, 10.1021/cm4001619
McCalla, 2013, Formation of layered–layered composites in the Li–Co–Mn oxide pseudoternary system during slow cooling, Chem. Mater., 25, 912, 10.1021/cm304002b
Li, 2014, Structural and electrochemical study of the Li–Mn–Ni oxide system within the layered single phase region, Chem. Mater., 26, 7059, 10.1021/cm503505b
Koga, 2013, Different oxygen redox participation for bulk and surface: a possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2, J. Power Sources, 236, 250, 10.1016/j.jpowsour.2013.02.075
Genevois, 2015, Insight into the atomic structure of cycled lithium-Rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 using HAADF STEM and electron nanodiffraction, J. Phys. Chem. C, 119, 75, 10.1021/jp509388j
Koga, 2014, Operando X-ray absorption study of the redox processes involved upon cycling of the li-Rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li ion batteries, J. Phys. Chem. C, 118, 5700, 10.1021/jp412197z
Shi, 2014, Hollow Li1.2Mn0.5Co0.25Ni0.05O2 microcube prepared by binary template as a cathode material for lithium ion batteries, J. Power Sources, 257, 198, 10.1016/j.jpowsour.2014.02.011
Yang, 2014, Porous 0.2Li2MnO3·0.8LiNi0.5Mn0.5O2 nanorods as cathode materials for lithium-ion batteries, J. Mater. Chem. A, 2, 1636, 10.1039/C3TA14228K
Cho, 2007, Synthesis and characterization of Li[Ni0.41Li0.08Mn0.51]O2 nanoplates for Li battery cathode material, J. Phys. Chem. C, 111, 3192, 10.1021/jp067116n
Lee, 2008, Layered Li0.88[Li0.18Co0.33Mn0.49]O2 nanowires for fast and high capacity Li-ion storage material, Nano Lett., 8, 957, 10.1021/nl0731466
Kim, 2009, Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode, Chem. Commun., 218, 10.1039/B815378G
Ahn, 2010, Polyaniline nanocoating on the surface of layered Li[Li0.2Co0.1Mn0.7]O2 nanodisks and enhanced cyclability as a cathode electrode for rechargeable lithium-ion battery, J. Phys. Chem. C, 114, 3675, 10.1021/jp9095437
Kang, 2009, Enhancing the rate capability of high capacity xLi2MnO3·(1-x)LiMO2 (M=Mn, Ni Co) electrodes by Li–Ni–PO4 treatment, Electrochem. Commun., 11, 748, 10.1016/j.elecom.2009.01.025
Miao, 2014, Li2ZrO3-coated 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery, J. Power Sources, 264, 147, 10.1016/j.jpowsour.2014.04.068
Shi, 2013, Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method, Electrochim. Acta, 88, 671, 10.1016/j.electacta.2012.10.111
Shi, 2012, Effect of carbon coating on electrochemical performance of Li1.048Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries, Electrochim. Acta, 63, 112, 10.1016/j.electacta.2011.12.082
Song, 2012, Influence of Ru substitution on Li-rich 0.55Li2MnO3·0.45LiNi1/3Co1/3Mn1/3O2 cathode for Li-ion batteries, Electrochim. Acta, 80, 187, 10.1016/j.electacta.2012.06.118
Park, 2006, The effects of Na doping on performance of layered Li1.1-xNax[Ni0.2Co0.3Mn0.4]O2 materials for lithium secondary batteries, Mater. Chem. Phys., 95, 218, 10.1016/j.matchemphys.2005.06.014
Jafta, 2012, Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery, Electrochim. Acta, 85, 411, 10.1016/j.electacta.2012.08.074
Kang, 2005, The effect of Al(OH)3 coating on the Li[Li0.2Ni0.2Mn0.6]O2 cathode material for lithium secondary battery, Electrochim. Acta, 50, 4784, 10.1016/j.electacta.2005.02.032
Li, 2012, AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries, Electrochim. Acta, 78, 308, 10.1016/j.electacta.2012.05.142
Myung, 2010, Effect of AlF3 coating on thermal behavior of chemically delithiated Li0.35[Ni1/3Co1/3Mn1/3]O2, J. Phys. Chem. C, 114, 4710, 10.1021/jp9082322
Gao, 2009, High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2–V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries, Electrochem. Commun., 11, 84, 10.1016/j.elecom.2008.10.036
Kim, 2006, Pre-conditioned layered electrodes for lithium batteries, J. Power Sources, 153, 258, 10.1016/j.jpowsour.2005.05.081
Thackeray, 2007, Li2MnO3-stabilized LiMO2 (M=Mn Ni, Co) electrodes for lithium-ion batteries, J. Mater. Chem., 17, 3112, 10.1039/b702425h
Kang, 2006, The effects of acid treatment on the electrochemical properties of 0.5 Li2MnO3⋅0.5 LiNi0.44Co0.25Mn0.31O2 electrodes in lithium cells, J. Electrochem. Soc., 153, A1186, 10.1149/1.2194764
Johnson, 2008, Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1-x)LiMn0.333Ni0.333Co0.333O2 (0≤x≤0.7), Chem. Mater., 20, 6095, 10.1021/cm801245r
Thackeray, 2005, Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries, J. Mater. Chem., 15, 2257, 10.1039/b417616m
Zhang, 2015, Nanostructured Mn-based oxides for electrochemical energy storage and conversion, Chem. Soc. Rev., 44, 699, 10.1039/C4CS00218K
Wang, 2013, [small beta]-MnO2 as a cathode material for lithium ion batteries from first principles calculations, Phys. Chem. Chem. Phys., 15, 9075, 10.1039/c3cp50392e
Wu, 2012, Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials?, J. Mater. Chem., 22, 1489, 10.1039/C1JM14459F
Guo, 2014, Surface coating of lithium-manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries, J. Mater. Chem. A, 2, 4422, 10.1039/c3ta15206e
Weill, 2007, Cation ordering in the layered Li1+x(Ni0.425Mn0.425Co0.15)1-xO2 materials (x=0 and 0.12), J. Power Sources, 172, 893, 10.1016/j.jpowsour.2007.05.090
Bréger, 2005, High-resolution X-ray diffraction, DIFFaX NMR and first principles study of disorder in the Li2MnO3–Li[Ni1/2Mn1/2]O2 solid solution, J. Solid State Chem., 178, 2575, 10.1016/j.jssc.2005.05.027
Li, 2015, Measurements of interdiffusion coefficients of transition metals in layered Li–Ni–Mn–Co oxide Core–Shell materials during sintering, Chem. Mater., 27, 7765, 10.1021/acs.chemmater.5b03499
Tan, 2014, Controllable crystalline preferred orientation in Li–Co–Ni–Mn oxide cathode thin films for all-solid-state lithium batteries, Nanoscale, 6, 10611, 10.1039/C4NR02949F
Nithya, 2009, High-capacity sol-gel synthesis of LiNixCoyMn1-x-yO2 (0<=x, y<=0.5) cathode material for use in lithium rechargeable batteries, J. Phys. Chem. C, 113, 17936, 10.1021/jp907036a
Dahéron, 2009, Surface properties of LiCoO2 investigated by XPS analyses and theoretical calculations, J. Phys. Chem. C, 113, 5843, 10.1021/jp803266w
Liu, 2014, Improving the electrochemical performance of layered lithium-rich transition-metal oxides by controlling the structural defects, Energy Environ. Sci., 7, 705, 10.1039/C3EE41664J
Yabuuchi, 2011, Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2, J. Am. Chem. Soc., 133, 4404, 10.1021/ja108588y
Liu, 2013, Effect of MnO2 modification on electrochemical performance of LiNi0.2Li0.2Mn0.6O2 layered solid solution cathode, J. Power Sources, 222, 455, 10.1016/j.jpowsour.2012.09.014
Dong, 2013, Sodium substitution for partial lithium to significantly enhance the cycling stability of Li2MnO3 cathode material, J. Power Sources, 243, 78, 10.1016/j.jpowsour.2013.05.155
Sun, 2015, AlF3 surface-coated Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with superior electrochemical performance for lithium-Ion batteries, ChemSusChem, 8, 2544, 10.1002/cssc.201500143
Levi, 2000, On electrochemical impedance measurements of LixCo0.2Ni0.8O2 and LixNiO2 intercalation electrodes, Electrochim. Acta, 45, 1781, 10.1016/S0013-4686(99)00402-8
Sun, 2013, High performance LiV0.96Mn0.04PO4F/C cathodes for lithium-ion batteries, J. Mater. Chem. A, 1, 2501, 10.1039/c2ta01338j
Sun, 2013, Superior lithium storage of the carbon modified hybrid of manganese monoxide and carbon nanotubes, Mater. Lett., 113, 186, 10.1016/j.matlet.2013.09.077
Cui, 2010, Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process, Electrochim. Acta, 55, 922, 10.1016/j.electacta.2009.08.020
Li, 2014, In situ one-step synthesis of CoFe2O4/graphene nanocomposites as high-performance anode for lithium-ion batteries, Electrochim. Acta, 129, 33, 10.1016/j.electacta.2014.02.039
Wei, 2015, Eliminating voltage decay of lithium-rich Li1.14Mn0.54Ni0.14Co0.14O2 cathodes by controlling the electrochemical process, Chem.—Eur. J., 21, 7503, 10.1002/chem.201406641
