Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Khôi phục tellurium bằng phương pháp điện hóa từ chất thải công nghiệp luyện kim
Tóm tắt
Nghiên cứu hiện tại phác thảo quá trình khôi phục điện hóa tellurium từ phần chất thải của nhà máy luyện kim, cụ thể là xỉ Doré. Tại nhà máy kim loại quý, tellurium được giàu hóa vào xỉ lò TROF (Tilting, Rotating Oxy Fuel) và do đó được coi là một nguồn tài nguyên bị mất — mặc dù xỉ vẫn chứa một lượng tellurium có thể khôi phục được. Để khôi phục Te, xỉ trước tiên được ngâm trong nước cường toan, tạo ra dung dịch استخراج nhiều kim loại (PLS) với 421 ppm Te và các yếu tố hòa tan chiếm ưu thế là Na, Ba, Bi, Cu, As, B, Fe và Pb (trong khoảng từ 1.4 đến 6.4 g dm−3), cũng như các yếu tố vi lượng ở quy mô ppb đến ppm. Việc tiếp xúc của xỉ với dung dịch giàu chloride cho phép hình thành phức chloride đồng và do đó, giảm khả năng khử của đồng nguyên tố. Điều này cho phép tăng cường tính chọn lọc trong quá trình khôi phục điện hóa Te. Các kết quả cho thấy rằng điện thắng (EW) là phương pháp khôi phục Te ưa thích ở nồng độ trên 300 ppm, trong khi ở nồng độ thấp hơn EDRR được ưu tiên. Độ tinh khiết của tellurium đã khôi phục được nghiên cứu bằng SEM-EDS (kính hiển vi điện tử quét - quang phổ phân tán năng lượng). Dựa trên nghiên cứu, một quy trình khôi phục điện hóa hai giai đoạn mới kết hợp để thu hồi tellurium từ PLS xỉ Doré được đề xuất: EW được theo sau bởi EDRR.
Từ khóa
Tài liệu tham khảo
Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6(4):189–213. https://doi.org/10.1007/s10311-008-0159-9
U.S. Geological Survey (2018) Mineral commodity summaries 2018. U.S. Geological Survey, Reston, p 200. https://doi.org/10.3133/70194932
Hoffmann JE (1989) Recovering selenium and tellurium from copper refinery slimes. JOM 41(7):33–38. https://doi.org/10.1007/BF03220269
Fthenakis VM (2000) End-of-life management and recycling of PV modules. Energy Policy 28(14):1051–1058. https://doi.org/10.1016/S0301-4215(00)00091-4
Feltrin A, Freundlich A (2008) Material considerations for terawatt level deployment of photovoltaics. Renew Energy 33(2):180–185. https://doi.org/10.1016/j.renene.2007.05.024
Kavlak G, Graedel TE (2013) Global anthropogenic tellurium cycles for 1940–2010. Resour Conserv Recycl 76:21–26. https://doi.org/10.1016/j.resconrec.2013.04.007
Aspiala M, Taskinen P (2016) Thermodynamic study of the Ag–Sb–Te system with an advanced EMF method. J Chem Thermodyn 93:261–266. https://doi.org/10.1016/j.jct.2015.08.025
Amouyal Y (2013) On the role of lanthanum substitution defects in reducing lattice thermal conductivity of the AgSbTe2 (P4/mmm) thermoelectric compound for energy conversion applications. Comput Mater Sci 78:98–103. https://doi.org/10.1016/j.commatsci.2013.05.027
Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715. https://doi.org/10.1021/ja00072a025
Tang G, Qian Q, Wen X, Zhou G, Chen X, Sun M, Chen D, Yang Z (2015) Phosphate glass-clad tellurium semiconductor core optical fibers. J Alloy Compd 633:1–4. https://doi.org/10.1016/j.jallcom.2015.02.007
Rellick JR, McMahon CJ, Marcus HL, Palmberg PW (1971) The effect of tellurium on intergranular cohesion in iron. Metall Mater Trans B 2(5):1492–1494. https://doi.org/10.1007/BF02913388
Sherwani AF, Usmani JA (2010) Life cycle assessment of solar PV based electricity generation systems: a review. Renew Sustain Energy Rev 14(1):540–544. https://doi.org/10.1016/j.rser.2009.08.003
SolarPower Europe (2018) Global Market Outlook for Solar Power/2018 – 2022, Belgium, Brussels, ISBN: 9789082714319. http://www.solarpowereurope.org. Accessed 12 Aug 2018
Biswas J, Jana RK, Kumar V, Dasgupta P, Bandyopadhyay M, Anyal SK (1998) Hydrometallurgical processing of anode slime for recovery of valuable metals. In: Bandopadhyay A, Goswani NG, Rao PR (eds) Environmental and Waste Management. National Metallurgical Laboratory, Jamshedpur, pp 2016–2224
Wang WK, Hoh Y-C, Chuang W-S, Shaw I-S (1981) Hydrometallurgical process for recovering precious metals from anode slime, U.S. Patent, US4293332A, 7 pages
Robles-Vega A, Sanchez-Corrales VM, Castillon-Barraza F (2009) An improved hydrometallurgical route for tellurium production. Miner Metall Process 26(3):169–173
Wang S (2011) Tellurium, its resourcefulness and recovery. JOM 63(8):90–93. https://doi.org/10.1007/s11837-011-0146-7
Swinbourne DR, Barbante GG, Sheeran A (1998) Tellurium distribution in copper anode slimes smelting. Metall Mater Trans B 29(3):555–562. https://doi.org/10.1007/s11663-998-0089-8
Schlesinger ME, King MJ, Sole KC, Davenport WG (2011) Extractive metallurgy of copper, 5th edn. Elsevier, Oxford, pp 415–426
Qu D, Lee C-WJ, Uosaki K (2009) Pt nano-layer formation by redox replacement of cu adlayer on Au(111) surface. Bull Korean Chem Soc 30(12):2875–2876. https://doi.org/10.5012/bkcs.2009.30.12.2875
Mkwizu TS, Mathe MK, Cukrowski I (2010) Electrodeposition of multilayered bimetallic nanoclusters of ruthenium and platinum via surface-limited redox − replacement reactions for electrocatalytic applications. Langmuir 26(1):570–580. https://doi.org/10.1021/la902219t
Mrozek MF, Xie Y, Weaver MJ (2001) Surface-enhanced raman scattering on uniform platinum-group overlayers: preparation by redox replacement of underpotential-deposited metals on gold. Anal Chem 73(24):5953–5960. https://doi.org/10.1021/ac0106391
Kim Y-G, Kim JY, Vairavapandian D, Stickney JL (2006) Platinum nanofilm formation by EC-ALE via redox replacement of UPD copper: studies using in situ scanning tunneling microscopy. J Phys Chem B 110(36):17998–18006. https://doi.org/10.1021/jp063766f
Sarkar A, Manthiram A (2010) Synthesis of Pt@Cu Core − shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells. J Phys Chem C 114(10):4725–4732. https://doi.org/10.1021/jp908933r
Wragg DA, Yliniemi K, Watson TM, Worsley DA (2013) Platinized counter electrodes for dye sensitized solar cells through the redox replacement of a low power electrodeposited lead sacrificial template. ECS Trans 53(24):11–17. https://doi.org/10.1149/05324.0011ecst
Yliniemi K, Wragg D, Wilson BP, McMurray HN, Worsley DA, Schmuki P, Kontturi K (2013) Formation of Pt/Pb nanoparticles by electrodeposition and redox replacement cycles on fluorine doped tin oxide glass. Electrochim Acta 88:278–286. https://doi.org/10.1016/j.electacta.2012.10.089
Herraro E, Buller LJ, Abruña HD (2001) Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and other materials. Chem Rev 101(7):1897–1930. https://doi.org/10.1021/cr9600363
Viyannalage LT, Vasilic R, Dimitrov N (2007) Epitaxial growth of Cu on Au(111) and Ag(111) by surface limited redox replacement – an electrochemical and STM study. J Phys Chem C 111(10):4036–4041. https://doi.org/10.1021/jp067168c
Fayette M, Liu Y, Bertrand D, Nutariya J, Vasiljevic N, Dimitrov N (2011) From Au to Pt via surface limited redox replacement of Pb UPD in one-cell configuration. Langmuir 27(9):5650–5658. https://doi.org/10.1021/la200348s
Gokcen D, Bae S-E, Brankovic SR (2010) Stoichiometry of Pt submonolayer deposition via surface-limited redox replacement reaction. J Electrochem Soc 157(11):D582–D587. https://doi.org/10.1149/1.3490416
Brankovic SR, Wang JX, Adžić RR (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474(1–3):L173–L179. https://doi.org/10.1016/S0039-6028(00)01103-1
Ahmadi K, Wu D, Dole N, Monteiro RO, Brankovic SR (2019) Tuning surface chemoresistivity of Au ultrathin films using metal deposition via surface-limited redox replacement of the underpotentially deposited Pb monolayer. ACS Sens. 4(9):2442–2449. https://doi.org/10.1021/acssensors.9b01045
Gregory BW, Stickney JL (1991) Electrochemical atomic layer epitaxy (ECALE). J Electroanal Chem Interfacial Electrochem 300(1–2):543–561. https://doi.org/10.1016/0022-0728(91)85415-L
Ouendi S, Arico C, Blanchard F, Cordon J-L, Wallart X, Taberna PL, Roussel P, Clavier L, Simon P, Lethien C (2019) Synthesis of T-Nb2O5 thin-films deposited by atomic layer deposition for miniaturized electrochemical energy storage devices. Energy Storage Mater 16:581–588. https://doi.org/10.1016/j.ensm.2018.08.022
Patil B, Satilmis B, Khalily MA, Uyar T (2019) Atomic layer deposition of NiOOH/Ni(OH)2 on PIM-1-based N-doped carbon nanofibers for electrochemical water splitting in alkaline medium. Chem Sustain Energy Mater 12(7):1469–1477. https://doi.org/10.1002/cssc.201802500
Venkatraman K, Gusley R, Lesak A, Akolkar R (2019) Electrochemistry-enabled atomic layer deposition of copper: investigation of the deposit growth rate and roughness. J Vac Sci Technol, A 37(2):020901-1–020901-8. https://doi.org/10.1116/1.5079560
Halli P, Elomaa H, Wilson BP, Yliniemi K, Lundström M (2017) Improved metal circular economy-selective recovery of minor Ag concentrations from Zn process solutions. ACS Sustain Chem Eng 5(11):10996–11004. https://doi.org/10.1021/acssuschemeng.7b02904
Elomaa H, Halli P, Sirviö T, Yliniemi K, Lundström A (2018) future application of pulse plating – silver recovery from hydrometallurgical bottom ash leachant. Trans IMF 96(5):253–257. https://doi.org/10.1080/00202967.2018.1507320
Yliniemi K, Wang Z, Korolev I, Hannula P, Halli P, Lundström M (2018) Effect of impurities in precious metal recovery by electrodeposition-redox replacement method from industrial side-streams and process streams. ECS Trans 85(4):59–67. https://doi.org/10.1149/08504.0059ecst
Korolev I, Altinkaya P, Halli P, Hannula P-M, Yliniemi K, Lundström M (2018) Electrochemical recovery of minor concentrations of gold from cyanide-free cupric chloride leaching solutions. J Clean Prod 186:840–850. https://doi.org/10.1016/j.jclepro.2018.03.177
Halli P, Heikkinen JJ, Elomaa H, Wilson BP, Jokinen V, Yliniemi K, Franssila S, Lundström M (2018) Platinum recovery from industrial process solutions by electrodeposition-redox replacement. ACS Sustain Chem Eng 6(11):14631–14640. https://doi.org/10.1021/acssuschemeng.8b03224
Yliniemi K, Nguyen NT, Mohajernia S, Liu N, Wilson BP, Schmuki P, Lundström M (2018) A direct synthesis of platinum/nickel co-catalysts on titanium dioxide nanotube surface from hydrometallurgical-type process streams. J Clean Prod 201:39–48. https://doi.org/10.1016/j.jclepro.2018.08.022
Halli P, Hailemariam T, Latostenmaa P, Lundström M (2018) Leaching behavior of Cu, Bi and Sb from TROF furnace Doré slag during mineral acid leaching, International Mineral Processing Congress, Moscow, Hydro- and Bio-Hydrometallurgy Section, 446–454
Sorenson TA, Lister TE, Huang BM, Stickney JL (1999) A comparison of atomic layers formed by electrodeposition of selenium and tellurium scanning tunneling microscopy studies on Au(100) and Au(111). J Electrochem Soc 146(3):1019–1027. https://doi.org/10.1149/1.1391715
Sorenson TA, Varazo K, Suggs DW, Stickney JL (2001) Formation of and phase transitions in electrodeposited tellurium atomic layers on Au(1 1 1). Surf Sci 470(3):197–214. https://doi.org/10.1016/S0039-6028(00)00861-X
Lundström M, Aromaa J, Forsén O, Hyvärinen O, Barker MH (2005) Leaching of chalcopyrite in cupric chloride solution. Hydrometallurgy 77(1–2):89–95. https://doi.org/10.1016/j.hydromet.2004.10.013
Haiduc I, King RB, Newton MG (1994) Stereochemical aspects of tellurium complexes with sulfur ligands: molecular compounds and supramolecular associations. Chem Rev 94(2):301–326. https://doi.org/10.1021/cr00026a002
Alekperov AI (1974) Electrochemistry of selenium and tellurium. Russ Chem Rev 43(4):235–250. https://doi.org/10.1070/RC1974v043n04ABEH001803
Jayasekera S, Ritchie IM, Avraamides J (1994) A cyclic voltammetric study of the dissolution of tellurium. Aust J Chem 47(10):1953–1965. https://doi.org/10.1071/CH9941953
Mori E, Baker CK, Reynolds JR, Rajeshwar K (1988) Aqueous electrochemistry of tellurium at glassy carbon and gold: a combined voltammetry-oscillating quartz crystal microgravimetry study. J Electroanal Chem Interfacial Electrochem 252(2):441–451. https://doi.org/10.1016/0022-0728(88)80228-6
Rudnik E, Sobesto J (2011) Cyclic voltammetric studies of tellurium in diluted HNO3 solutions. Arch Metall Mater 52(2):271–277. https://doi.org/10.2478/v10172-011-0030-z
Rudnik E, Biskup P (2014) Electrochemical behavior of tellurium in acidic nitrate solutions. Metall Foundry Eng 40(1):15–32. https://doi.org/10.7494/mafe.2014.40.1.15
Mokmeli M, Dreisinger D, Wassink B (2014) Thermodynamics and kinetics study of tellurium removal with cuprous ion. Hydrometallurgy 147–148:20–29. https://doi.org/10.1016/j.hydromet.2014.04.012
Mokmeli M, Dreisinger D, Wassink B (2015) Modeling of selenium and tellurium removal from copper electrowinning solution. Hydrometallurgy 153:12–20. https://doi.org/10.1016/j.hydromet.2015.01.007
Kowalik R, Kutyła D, Mech K, Tokarski T, Żabiński P (2015) Electrowinning of tellurium from acidic solutions. Arch Metall Mater 60(2A):591–596. https://doi.org/10.1515/amm-2015-0178
Ha Y-C, Sohn H-J, Jeong G-J, Rhee K-I (2000) Electrowinning of tellurium from alkaline leach liquor of cemented Te. J Appl Electrochem 30(3):315–322. https://doi.org/10.1023/A:1003867821601
Broderick G, Handle B, Paschen P (1999) Strategies for optimal operation of the tellurium electrowinning process. Metall Mater Trans B 30(1):5–13. https://doi.org/10.1007/s11663-999-0001-1
Mezei A, Ashbury M, Canizares M, Molnar R, Given H (2008) Hydrometallurgical recycling of the semiconductor material from photovoltaic materials – Part two; Metal recovery, Hydrometallurgy 2008: Proceedings of the Sixth International Symposium, Phoenix, Arizona, USA, pp 224–237, ISBN: 9780873352666
Sany S (2009) Optimisation of influential factors in electrowinning of tellurium by means of PLS modelling, Master’s Thesis, Luleå University of Technology, p 47
Voorhees PW (1985) The theory of ostwald ripening. J Stat Phys 38(1–2):231–252. https://doi.org/10.1007/BF01017860
Yao JH, Elder KR, Guo H, Grant M (1993) Theory and simulation of Ostwald ripening. Phys Rev B 47(21):14110–14125. https://doi.org/10.1103/PhysRevB.47.14110
Kabalnov A (2001) Ostwald ripening and related phenomena. J Dispers Sci Technol 22(1):1–12. https://doi.org/10.1081/DIS-100102675
Haynes WM, Lide DR, Bruno TJ (2017) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, 97th edn. CRC Press, Boca Raton
González-Ibarra AA, Nava-Alonso F, Uribe-Salas A (2019) Electrochemical study of silver telluride (Ag2Te): anodic and cathodic potential dependent-reactions in alkaline cyanide solutions. Hydrometallurgy 183:230–239. https://doi.org/10.1016/j.hydromet.2018.12.019
Zhu W, Yang JY, Gao XH, Bao SQ, Fan XA, Zhang TJ, Cui K (2005) Effect of potential on bismuth telluride thin film growth by electrochemical atomic layer epitaxy. Electrochim Acta 50(20):4041–4047. https://doi.org/10.1016/j.electacta.2005.01.003
Mackinnon DJ, Brannen JM, Fenn PL (1987) Characterization of impurity effects in zinc electrowinning from industrial acid sulphate electrolyte. J Appl Electrochem 17(6):1129–1143. https://doi.org/10.1007/BF01023596
Mulaudzi N, Kotze MH (2013) Direct cobalt electrowinning as an alternative to intermediate cobalt mixed hydroxide product. In: 7th Base Metals Conference of the Southern African Institute of Mining and Metallurgy, Johannesburg, South Africa, pp 209–222
Lemos FA, Sobral LGS, Dutra AJB (2006) Copper electrowinning from gold plant waste streams. Miner Eng 19(5):388–398. https://doi.org/10.1016/j.mineng.2005.10.019
Ettel VA, Gendron AS, Tilak BV (1975) Electrowinning copper at high current densities. Metall Mater Trans B 6(1):31–36. https://doi.org/10.1007/BF02825675
Yu S, Zhang A, Wang C (2015) Preparation of dendritic Te crystals by electrodeposition: growth mechanism study. J Electrochem Soc 162(8):D401–D404. https://doi.org/10.1149/2.0091509jes
Jin W, Hu M, Hu J (2018) Selective and efficient electrochemical recovery of dilute copper and tellurium from acidic chloride solutions. ACS Sustain Chem Eng 6(10):13378–13384. https://doi.org/10.1021/acssuschemeng.8b03150
Popov KI, Živković PM, Nikolić N (2016) Electrochemical aspects of formation of dendrites. Zaštita Materijala 57(1):55–62. https://doi.org/10.5937/ZasMat1601055P
Popov KI, Pavlović MG, Maksimović MD (1982) Comparison of the critical conditions for initiation of dendritic growth and powder formation in potentiostatic and galvanostatic copper electrodeposition. J Appl Electrochem 12(5):525–531. https://doi.org/10.1007/BF00614978
Popov KI, Maksimović MD, Zečević SK, Stojić MR (1986) Surface roughening and dendritic growth in pulsating overpotential copper electrodeposition. Surf Coat Technol 27(2):117–129. https://doi.org/10.1016/0257-8972(86)90122-2
Shao W, Zangari G (2009) Dendritic growth and morphology selection in copper electrodeposition from acidic sulfate solutions containing chlorides. J Phys Chem C 113(23):10097–10102. https://doi.org/10.1021/jp8095456
Hoffman ZB, Gray TS, Xu Y, Lin Q, Gunnoe TB, Zangari G (2019) High selectivity towards formate production by electrochemical reduction of carbon dioxide at copper-bismuth dendrites. Chem Sustain Energy Mater 12(1):231–239. https://doi.org/10.1002/cssc.201801708
Kaischew R, Mutaftschiew B (1965) Electrolytic nucleation of mercury (in Germane). Electrochim Acta 10(7):643–650. https://doi.org/10.1016/0013-4686(65)87043-8
Deslouis C, Maurin G, Pebere N, Tribollet B (1988) Investigation of tellurium electrocrystallization by EHD impedance technique. J Appl Electrochem 18(5):745–750. https://doi.org/10.1007/BF01016902
Jiang Q, Liu C, Lu B, Xu J, Song H, Shi H, Mo D, Wang Z, Jiang F, Zhu Z (2015) PEDOT:PSS film: a novel flexible organic electrode for facile electrodeposition of dendritic tellurium nanostructures. J Mater Sci 50(14):4813–4821. https://doi.org/10.1007/s10853-015-8818-2
Frantz C, Zhang Y, Michler J, Philippe L (2016) On the growth mechanism of electrodeposited PbTe dendrites. CrystEngComm 18:2319–2326. https://doi.org/10.1039/C6CE00107F
Rhee K-I, Lee CK, Ha Y-C, Jeong G-J, Kim H-S, Sohn H-J (1999) Tellurium recovery from cemented tellurium with minimum waste disposal. Hydrometallurgy 53(2):189–201. https://doi.org/10.1016/S0304-386X(99)00044-4
Handle B, Broderick G, Paschen P (1997) A statistical response surface study of the tellurium electrowinning process. Hydrometallurgy 46(1–2):105–120. https://doi.org/10.1016/S0304-386X(97)00004-2
Rosen M, Flinn DR, Schuldiner S (1969) Double layer capacitance on platinum in 1 M H2SO4 from the reversible hydrogen potential to the oxygen formation region. J Electrochem Soc 116(8):1112–1116. https://doi.org/10.1149/1.2412227
Cuartero M, Bishop J, Walker R, Acres RG, Bakker E, De Marco R, Crespo GA (2016) Evidence of double layer/capacitive charging in carbon nanomaterial-based solid contact polymeric ion-selective electrodes. Chem Commun 52(62):9703–9706. https://doi.org/10.1039/C6CC04876E
Lee CK, Rhee K-I, Sohn H-J (1997) The recovery of tellurium from copper anode slimes by hydrometallurgical processes. J Korean Inst Resour Recycl 6(3):41–45
Bonificio WD, Clarke DR (2014) Bacterial recovery and recycling of tellurium from tellurium-containing compounds by Pseudoalteromonas sp EPR3. J Appl Microbiol 117(5):1293–1304. https://doi.org/10.1111/jam.12629
Shibasaki T, Abe K, Takeuchi H (1992) Recovery of tellurium from decopperizing leach solution of copper refinery slimes by a fixed bed reactor. Hydrometallurgy 29(1–3):399–412. https://doi.org/10.1016/0304-386X(92)90024-T
Fan Y, Yang Y, Xiao Y, Zhao Z, Lei Y (2013) Recovery of tellurium from high tellurium-bearing materials by alkaline pressure leaching process: thermodynamic evaluation and experimental study. Hydrometallurgy 139:95–99. https://doi.org/10.1016/j.hydromet.2013.07.005