Tính chất điện hóa của vật liệu catốt LiNi0.9Co0.1O2 được chuẩn bị bằng phương pháp đồng kết tủa sử dụng tác nhân chelat sinh thái

Springer Science and Business Media LLC - Tập 26 - Trang 1567-1576 - 2022
Hyun Woo Park1, Jin Ung Hwang1,2, Ji Sun Im2,3, Jong Dae Lee1
1Department of Chemical Engineering, Chungbuk National University, Seowongu, Cheongju, Korea
2C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
3Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, Republic of Korea

Tóm tắt

Trong nghiên cứu này, một tiền chất hình cầu Ni0.9Co0.1(OH)2 với kích thước hạt trung bình 4.2 μm đã được tổng hợp bằng phương pháp đồng kết tủa sử dụng axit citric làm tác nhân chelat thân thiện với môi trường. Vật liệu catốt dạng lớp LiNi0.9Co0.1O2 được chuẩn bị bằng cách gia nhiệt hỗn hợp tiền chất Ni0.9Co0.1(OH)2 và LiOH·H2O ở nhiệt độ từ 680 đến 740 °C trong môi trường oxy. Quá trình gia nhiệt tối ưu cho quá trình nung đã được nghiên cứu dựa trên nhiệt độ và thời gian phản ứng (nhiệt độ thấp: hạt sơ cấp nhỏ và khoảng cách bề mặt → hiệu suất hồi phục thấp; nhiệt độ cao: hạt sơ cấp lớn → hiệu suất tỉ lệ thấp; thời gian phản ứng ngắn: tính tinh thể thấp → hiệu suất hồi phục thấp; thời gian phản ứng dài: hạt sơ cấp lớn → hiệu suất tỉ lệ thấp). Vật liệu catốt LiNi0.9Co0.1O2 được gia nhiệt ở 700 °C cho thấy hiệu ứng trộn cation thấp nhất và tính tinh thể xuất sắc; vật liệu này thể hiện đặc tính nạp/xả ban đầu tuyệt vời nhưng hiệu suất tỉ lệ thấp. Vật liệu catốt được gia nhiệt ở 700 °C đã được chọn làm vật liệu để nung lại do các đặc tính xuất sắc của nó. Để khắc phục sự ổn định cấu trúc ở tỉ lệ cao, vật liệu catốt gia nhiệt ở 700 °C đã được nung lại ở 700 °C; vật liệu nung lại đạt được dung lượng xả ban đầu là 215.3 mAh/g. Độ ổn định dung lượng của vật liệu catốt nung lại (84.5% ở chu kỳ thứ 50) tốt hơn vật liệu catốt nguyên bản (76.0% ở chu kỳ thứ 50) nhờ sự ổn định cấu trúc tăng cường. Vật liệu catốt nung lại cũng thể hiện hiệu suất tỉ lệ xuất sắc (75.3% ở 6 C/0.1 C).

Từ khóa

#vật liệu catốt #LiNi0.9Co0.1O2 #đồng kết tủa #tác nhân chelat sinh thái #tính chất điện hóa

Tài liệu tham khảo

Xu B, Qian D, Wang Z, Meng YS (2012) Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R 73:51–65. https://doi.org/10.1016/j.mser.2012.05.003 Myung ST, Maglia F, Park KJ, Yoon CS, Lamp P, Kim SJ, Sun YK (2017) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2:196–223. https://doi.org/10.1021/acsenergylett.6b00594 Kim J, Lee H, Cha H, Yoon M, Park M, Cho J (2018) Prospect and reality of Ni-rich cathode for commercialization. Adv Energy Mater 8:1702028. https://doi.org/10.1002/aenm.201702028 Yabuuchi N, Ohzuku T (2003) Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sources 119–121:171–174. https://doi.org/10.1016/S0378-7753(03)00173-3 Santhanam R, Rambabu B (2010) High rate cycling performance of Li1.05Ni1/3Co1/3Mn1/3O2 materials prepared by sol-gel co-precipitation methods for lithium-ion batteries. J Power Sources 195:4313–4317. https://doi.org/10.1016/j.jpowsour.2010.01.016 Li T, Li X, Wang Z, Guo H, Peng W, Zeng K (2015) Electrochemical properties of LiNi0.6Co0.2Mn0.2O2 as cathode material for Li-ion batteries prepared by ultrasonic spray pyrolysis. Mater Lett 159:39–42. https://doi.org/10.1016/j.matlet.2015.06.075 Xia L, Qiu K, Gao Y, He X, Zhou F (2015) High potential performance of cerium-doped LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery. J Mater Sci 50:2914–2920. https://doi.org/10.1007/s10853-015-8856-9 Ren D, Shen Y, Yang Y, Shen L, Levin BDA, Yu Y, Muller DA, Abruna HD (2017) Systematic optimization of battery materials: key parameter optimization for the scalable synthesis of uniform, high-energy, and high stability LiNi0.6Mn0.2Co0.2O2 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 9:35811–35819. https://doi.org/10.1021/acsami.7b10155 Vu DL, Lee J (2016) Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries. Korean J Chem Eng 33(2):514–526. https://doi.org/10.1007/s11814-015-0154-3 Yoon CS, Ryu HH, Park GT, Kim JH, Kim KH, Sun YK (2018) Extracting maximum capacity from Ni-rich Li [Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batteries. J Mater Chem A 6:4126–4132. https://doi.org/10.1039/C7TA11346C Li D, Peng Z, Guo W, Yuan C, Liu Y, Zhou Y (2007) Synthesis and characterization of LiNi0. 9Co0. 1O2 for lithium batteries. J Mater Sci 42(22):9221–9226. https://doi.org/10.1007/s10853-007-1905-2 Zhu B, Yu Z, Meng L, Xu Z, Lv C, Wang Y, Qu J (2021) The relationship between failure mechanism of nickel-rich layered oxide for lithium batteries and the research progress of coping strategies: a review. Ionics 27(7):2749–2784. https://doi.org/10.1007/s11581-021-04019-8 Li D, Peng Z, Guo W, Zhou Y (2008) Synthesis and characterization of LiNi0. 9Co0. 1O2 for lithium batteries by a novel method. J Alloys Compounds 457(1–2):L1-L5. https://doi.org/10.1016/j.jallcom.2007.02.146 Liu M, Liu N, Tan J, Su Y, Deng W, Chen L, Zhang Q (2019) Micromixer-assisted co-precipitation method for fast synthesis of layered Ni-rich materials for lithium-ion batteries. ChemElectroChem 6(12):3057–3064. https://doi.org/10.1002/celc.201900511 Zhu H, Yu H, Jiang H, Hu Y, Jiang H, Li C (2020) High-efficiency Mo doping stabilized LiNi0. 9Co0. 1O2 cathode materials for rapid charging and long-life Li-ion batteries. Chem Eng Sci 217:115518. https://doi.org/10.1016/j.ces.2020.115518 van Bommel A, Dahn JR (2009) Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia. Chem Mater 21(8):1500–1503. https://doi.org/10.1021/cm803144d Kim Y, Kim D (2012) Synthesis of high-density nickel cobalt aluminum hydroxide by continuous coprecipitation method. ACS Appl Mater Interfaces 4:586–589. https://doi.org/10.1021/am201585z Ko HS, Kim JH, Wang J, Lee JD (2017) Co/Ti co-substituted layered LiNiO2 prepared using a concentration gradient method as an effective cathode material for Li-ion batteries. J Power Sources 372:107–115. https://doi.org/10.1016/j.jpowsour.2017.10.021 Zhao T, Chen S, Li L, Zhang X, Chen R, Belharouak I, Wu F, Amine K (2013) Synthesis, characterization, and electrochemistry of cathode material Li[Li0.2Co0.13Ni0.13Mn0.54]O2 using organic chelating agents for lithium-ion batteries. J Power Sources 228:206–213. https://doi.org/10.1016/j.jpowsour.2012.11.099 Zhou F, Xu L, Kong J (2018) Co-precipitation synthesis of precursor with lactic acid acting as chelating agent and the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium-ion battery. J. Solid State Electrochem 22(3):943–952. https://doi.org/10.1007/s10008-017-3837-3 Li L, Wang D, Xu G, Zhou Q, Ma J, Zhang J, Cui G (2022) Recent progress on electrolyte functional additives for protection of nickel-rich layered oxide cathode materials. J Energy Chem 65:280–292. https://doi.org/10.1016/j.jechem.2021.05.049 Jorgensen TC, Weatherley LR (2003) Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Res 37:1723–1728. https://doi.org/10.1016/S0043-1354(02)00571-7 Ku Y, Peters RW (1986) The effect of weak chelating agents on the removal of heavy metals by precipitation processes. Environ Prog 5(3):147–153. https://doi.org/10.1002/ep.670050307 Ying J, Jiang C, Wan C (2004) Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries. J Power Sources 129:264–269. https://doi.org/10.1016/j.jpowsour.2003.10.007 Zheng J, Yan P, Estevez L, Wang C, Zhang JG (2018) Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries. Nano Energy 49:538–548. https://doi.org/10.1016/j.nanoen.2018.04.077 Park K, Park JH, Hong SG, Choi B, Heo S, Seo SW, Min K, Park JH (2017) Re-construction layer effect of LiNi0.8Co0.15Mn0.05O2 with solvent evaporation process. Sci Rep 7:44557. https://doi.org/10.1038/srep44557 Liu H, Zhang Z, Gong Z, Yang Y (2004) A comparative study of LiNi0.8Co0.2O2 cathode materials modified by lattice-doping and surface-coating. Solid State Ion 166:317–325. https://doi.org/10.1016/j.ssi.2003.11.010 Wu F, Tian J, Su Y, Wang J, Zhang C, Bao L, He T, Li J, Chen S (2015) Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials. ACS Appl Mater Interfaces 7:7702–7708. https://doi.org/10.1021/acsami.5b00645 Morales J, Pérez-Vicente C, Tirado JL (1990) Cation distribution and chemical deintercalation of Li1-xNi1+xO2. Mater Res Bull 25:623–630. https://doi.org/10.1016/0025-5408(90)90028-Z Ko HS, Park HW, Lee JD (2018) The effect of calcination temperature on the layered Li1.05Ni0.9Co0.05Ti0.05O2 for lithium-ion battery. Korean Chem Eng Res 56(5):718–724. https://doi.org/10.9713/kcer.2018.56.5.718 Dahn JR, Fuller EW, Obrovac M, von Sacken U (1994) Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells. Solid State Ion 69:265–270. https://doi.org/10.1016/0167-2738(94)90415-4 Lee KK, Yoon WS, Kim KB, Lee KY, Hong ST (2001) Characterization of LiNi0.85Co0.10Mn0.05O2 (M=Al, Fe) as a cathode material for lithium secondary batteries. J Power Sources 97–98:308–312. https://doi.org/10.1016/S0378-7753(01)00516-X Levi MD, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L (1999) Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J Electrochem Soc 146(4):1279–1289 Ko HS, Park HW, Kim GJ, Lee JD (2019) Electrochemical characteristics of lithium-excess cathode material (Li1+xNi0.9Co0.05Ti0.05O2) for lithium-ion batteries. Korean J Chem Eng 36(4):620–624. https://doi.org/10.1007/s11814-019-0248-4 Li S, Yao Z, Zheng J, Fu M, Cen J, Hwang SY, Jin H, Orlov A, Gu L, Wang S, Chen ZW, Su D (2020) Direct observation of defect-aided structural evolution in a nickel-rich layered cathode. Angew Chem Int Ed 59(49):22092–22099. https://doi.org/10.1002/anie.202008144 Iqbal A, Li D (2019) Systematic study of the effect of calcination temperature and Li/M molar ratio on high performance Ni-rich layered LiNi0. 9Co0. 1O2 cathode materials. Chem Phys Lett 720:97–106. https://doi.org/10.1016/j.cplett.2019.01.044 Tao Q, Wang L, Shi C, Li J, Chen G, Xue Z, Wang J, Wang S, Jin H (2021) Understanding the Ni-rich layered structure materials for high-energy density lithium-ion batteries. Materials Chemistry Frontiers 5(6):2607–2622. https://doi.org/10.1039/D1QM00052G Su S, Ma J, Zhao L, Lin K, Li Q, Lv S, Kang F, He YB (2021) Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries. Carbon Energy 3(6):866–894. https://doi.org/10.1002/cey2.129 Nguyen VH, Ngo MD, Kim YH (2020) Effect of soybean oil as a carbon source on the electrochemical property of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery. Carbon Letters 30(6):621–626. https://doi.org/10.1007/s42823-020-00133-1