Electrochemical performance of Paenibacillus profundus YoMME encapsulated in alginate polymer
Tài liệu tham khảo
L. Pereira, J. Cotas, Introductory Chapter: Alginates - A General Overview, in: Alginates - Recent Uses This Nat. Polym., IntechOpen, 2020. https://doi.org/10.5772/intechopen.88381.
Gombotz, 1998, Protein release from alginate matrices, Adv. Drug Deliv. Rev., 31, 267, 10.1016/S0169-409X(97)00124-5
Yu, 2011, Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells, Chem. Commun., 47, 12825, 10.1039/c1cc15874k
Yong, 2013, Enhancement of coulombic efficiency and salt tolerance in microbial fuel cells by graphite/alginate granules immobilization of Shewanella oneidensis MR-1, Process Biochem., 48, 1947, 10.1016/j.procbio.2013.09.008
Alkotaini, 2018, Alginate-Encapsulated Bacteria for the Treatment of Hypersaline Solutions in Microbial Fuel Cells, ChemBioChem., 19, 1162, 10.1002/cbic.201800142
L.A. Obasi, C.C. Opara, K.O. and A. Oji, Effect of Sodium Alginate on Proton Conductivity of Cassava Starch in a Microbial Fuel Cell, Greener J. Biol. Sci. 3 (2013) 074–083. https://doi.org/10.15580/GJBS.2013.2.120112309.
Hubenova, 2019, Development of coupled redox active network in Ca-alginate polymer for immobilization of Pseudomonas putida 1046 on electrode surface, Electrochim. Acta, 312, 432, 10.1016/j.electacta.2019.05.012
Mardiana, 2019, Applicability of Alginate Film Entrapped Yeast for Microbial Fuel Cell, Russ. J. Electrochem., 55, 78, 10.1134/S1023193519010075
Vu, 2009, molecules Bacterial Extracellular Polysaccharides Involved in Biofilm Formation, Molecules, 14, 2535, 10.3390/molecules14072535
Hubenova, 2020, Electroactivity of the Gram-positive bacterium Paenibacillus dendritiformis MA-72, Bioelectrochemistry, 136, 10.1016/j.bioelechem.2020.107632
Cercado-Quezada, 2011, Electrochemical micro-structuring of graphite felt electrodes for accelerated formation of electroactive biofilms on microbial anodes, Electrochem. Commun., 13, 440, 10.1016/j.elecom.2011.02.015
Hubenova, 2015, Extracellular electron transfer in yeast-based biofuel cells: A review, Bioelectrochemistry., 106, 177, 10.1016/j.bioelechem.2015.04.001
Pankratova, 2017, Electrochemical communication between living cells and conductive surfaces, Curr. Opin. Electrochem., 5, 193, 10.1016/j.coelec.2017.09.013
Bose, 2014, Electron uptake by iron-oxidizing phototrophic bacteria, Nat Commun, 5, 10.1038/ncomms4391
Gupta, 2020, Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications, J. Ind. Microbiol. Biotechnol., 47, 863, 10.1007/s10295-020-02309-0
Cao, 2011, Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: Characterization by infrared spectroscopy and proteomics, Environ. Microbiol., 13, 1018, 10.1111/j.1462-2920.2010.02407.x
Baron, 2009, Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1, J. Biol. Chem., 284, 28865, 10.1074/jbc.M109.043455
Souichiro Kato, Influence of Anode Potentials on Current Generation and Extracellular Electron Transfer Paths of Geobacter Species, Int. J. Mol. Sci. 18 (2017), 108; https://doi.org/10.3390/ijms18010108.
Paquete, 2022, Molecular Mechanisms of Microbial Extracellular Electron Transfer: The Importance of Multiheme Cytochromes, Front. Biosci., 27, 174, 10.31083/j.fbl2706174
Paquete, 2020, Electroactivity across the cell wall of Gram-positive bacteria, Comput. Struct, Biotechnol. J., 18, 3796
Freguia, 2009, Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone, Bioelectrochemistry, 76, 14, 10.1016/j.bioelechem.2009.04.001
Nimje, 2009, Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell, J. Power Sources, 190, 258, 10.1016/j.jpowsour.2009.01.019
Pankratova, 2019, Extracellular electron transfer features of Gram-positive bacteria, Anal. Chim. Acta, 1076, 32, 10.1016/j.aca.2019.05.007
Babanova, 2011, Influence of artificial mediators on yeast-based fuel cell performance, J. Biosci. Bioeng., 112, 379, 10.1016/j.jbiosc.2011.06.008
Hubenova, 2016, Mechanisms of electron transfer between a styrylquinolinium dye and yeast in biofuel cell, Bioelectrochemistry, 112, 158, 10.1016/j.bioelechem.2016.02.005
Hubenova, 2018, Electrodeposited styrylquinolinium dye as molecular electrocatalyst for coupled redox reactions, Bioelectrochemistry, 123, 173, 10.1016/j.bioelechem.2018.05.006
Hubenova, 2022, Photophysical and Electrochemical Properties of Newly Synthesized Stilbazolium Dyes, ChemElectroChem
Hubenova, 2022, Gram-positive bacteria covered bioanode in a membrane-electrode assembly for use in bioelectrochemical systems, Bioelectrochemistry, 144, 10.1016/j.bioelechem.2021.108011
Hubenova, 2022, Draft Genome Sequence of Paenibacillus profundus YoMME, a New Exoelectrogenic Gram-Positive Bacterium, Microbiol. Resour. Announc., 11, 10.1128/mra.00235-22
Logan, 2019, Electroactive microorganisms in bioelectrochemical systems, Nat. Rev. Microbiol., 17, 307, 10.1038/s41579-019-0173-x
Carlson, 2012, Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria, Proc. Natl. Acad. Sci. U. S. A., 109, 1702, 10.1073/pnas.1112905109
Faustino, 2021, Crossing the wall: Characterization of the multiheme cytochromes involved in the extracellular electron transfer pathway of Thermincola ferriacetica, Microorganisms, 9, 1, 10.3390/microorganisms9020293
Song, 2020, Enhanced Electrochemical Impedance Spectroscopy Analysis of Microbial Biofilms on an Electrochemically In Situ Generated Graphene Interface, ACS Sensors, 5, 1795, 10.1021/acssensors.0c00570
Rammelt, 1990, On the applicability of a constant phase element (CPE) to the estimation of roughness of solid metal electrodes, Electrochim. Acta, 35, 1045, 10.1016/0013-4686(90)90040-7
Margarit-Mattos, 2020, EIS and organic coatings performance: Revisiting some key points, Electrochim. Acta, 354, 10.1016/j.electacta.2020.136725
Stavrinidou, 2014, A physical interpretation of impedance at conducting polymer/electrolyte junctions, AIP Adv., 4, 017127, 10.1063/1.4863297
Abdul Halim, 2021, Basics of teaching electrochemical impedance spectroscopy of electrolytes for ion-rechargeable batteries - Part 2: Dielectric response of (non-) polymer electrolytes, Chem. Teach. Int., 3, 117, 10.1515/cti-2020-0018
Shukla, 2022, Handbook of Cell Biosensors, Handb. Cell Biosens., 141, 10.1007/978-3-030-23217-7_122