Electrochemical performance of Paenibacillus profundus YoMME encapsulated in alginate polymer

Bioelectrochemistry - Tập 150 - Trang 108354 - 2023
Eleonora Hubenova1, Mario Mitov2, Yolina Hubenova3,4
1Medical Faculty of the Rhein Friedrich Wilhelm University of Bonn, Bonn, Germany
2Innovative Center for Eco Energy Technologies, South-West University “Neofit Rilski”, Blagoevgrad, Bulgaria
3Department of Biochemistry and Microbiology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
4Department of Electrocatalysis and Electrocrystallization, Institute of Electrochemistry and Energy Systems “Acad. Evgeni Budevski” – Bulgarian Academy of Sciences, Sofia, Bulgaria

Tài liệu tham khảo

L. Pereira, J. Cotas, Introductory Chapter: Alginates - A General Overview, in: Alginates - Recent Uses This Nat. Polym., IntechOpen, 2020. https://doi.org/10.5772/intechopen.88381. Gombotz, 1998, Protein release from alginate matrices, Adv. Drug Deliv. Rev., 31, 267, 10.1016/S0169-409X(97)00124-5 Yu, 2011, Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells, Chem. Commun., 47, 12825, 10.1039/c1cc15874k Yong, 2013, Enhancement of coulombic efficiency and salt tolerance in microbial fuel cells by graphite/alginate granules immobilization of Shewanella oneidensis MR-1, Process Biochem., 48, 1947, 10.1016/j.procbio.2013.09.008 Alkotaini, 2018, Alginate-Encapsulated Bacteria for the Treatment of Hypersaline Solutions in Microbial Fuel Cells, ChemBioChem., 19, 1162, 10.1002/cbic.201800142 L.A. Obasi, C.C. Opara, K.O. and A. Oji, Effect of Sodium Alginate on Proton Conductivity of Cassava Starch in a Microbial Fuel Cell, Greener J. Biol. Sci. 3 (2013) 074–083. https://doi.org/10.15580/GJBS.2013.2.120112309. Hubenova, 2019, Development of coupled redox active network in Ca-alginate polymer for immobilization of Pseudomonas putida 1046 on electrode surface, Electrochim. Acta, 312, 432, 10.1016/j.electacta.2019.05.012 Mardiana, 2019, Applicability of Alginate Film Entrapped Yeast for Microbial Fuel Cell, Russ. J. Electrochem., 55, 78, 10.1134/S1023193519010075 Vu, 2009, molecules Bacterial Extracellular Polysaccharides Involved in Biofilm Formation, Molecules, 14, 2535, 10.3390/molecules14072535 Hubenova, 2020, Electroactivity of the Gram-positive bacterium Paenibacillus dendritiformis MA-72, Bioelectrochemistry, 136, 10.1016/j.bioelechem.2020.107632 Cercado-Quezada, 2011, Electrochemical micro-structuring of graphite felt electrodes for accelerated formation of electroactive biofilms on microbial anodes, Electrochem. Commun., 13, 440, 10.1016/j.elecom.2011.02.015 Hubenova, 2015, Extracellular electron transfer in yeast-based biofuel cells: A review, Bioelectrochemistry., 106, 177, 10.1016/j.bioelechem.2015.04.001 Pankratova, 2017, Electrochemical communication between living cells and conductive surfaces, Curr. Opin. Electrochem., 5, 193, 10.1016/j.coelec.2017.09.013 Bose, 2014, Electron uptake by iron-oxidizing phototrophic bacteria, Nat Commun, 5, 10.1038/ncomms4391 Gupta, 2020, Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications, J. Ind. Microbiol. Biotechnol., 47, 863, 10.1007/s10295-020-02309-0 Cao, 2011, Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: Characterization by infrared spectroscopy and proteomics, Environ. Microbiol., 13, 1018, 10.1111/j.1462-2920.2010.02407.x Baron, 2009, Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1, J. Biol. Chem., 284, 28865, 10.1074/jbc.M109.043455 Souichiro Kato, Influence of Anode Potentials on Current Generation and Extracellular Electron Transfer Paths of Geobacter Species, Int. J. Mol. Sci. 18 (2017), 108; https://doi.org/10.3390/ijms18010108. Paquete, 2022, Molecular Mechanisms of Microbial Extracellular Electron Transfer: The Importance of Multiheme Cytochromes, Front. Biosci., 27, 174, 10.31083/j.fbl2706174 Paquete, 2020, Electroactivity across the cell wall of Gram-positive bacteria, Comput. Struct, Biotechnol. J., 18, 3796 Freguia, 2009, Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone, Bioelectrochemistry, 76, 14, 10.1016/j.bioelechem.2009.04.001 Nimje, 2009, Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell, J. Power Sources, 190, 258, 10.1016/j.jpowsour.2009.01.019 Pankratova, 2019, Extracellular electron transfer features of Gram-positive bacteria, Anal. Chim. Acta, 1076, 32, 10.1016/j.aca.2019.05.007 Babanova, 2011, Influence of artificial mediators on yeast-based fuel cell performance, J. Biosci. Bioeng., 112, 379, 10.1016/j.jbiosc.2011.06.008 Hubenova, 2016, Mechanisms of electron transfer between a styrylquinolinium dye and yeast in biofuel cell, Bioelectrochemistry, 112, 158, 10.1016/j.bioelechem.2016.02.005 Hubenova, 2018, Electrodeposited styrylquinolinium dye as molecular electrocatalyst for coupled redox reactions, Bioelectrochemistry, 123, 173, 10.1016/j.bioelechem.2018.05.006 Hubenova, 2022, Photophysical and Electrochemical Properties of Newly Synthesized Stilbazolium Dyes, ChemElectroChem Hubenova, 2022, Gram-positive bacteria covered bioanode in a membrane-electrode assembly for use in bioelectrochemical systems, Bioelectrochemistry, 144, 10.1016/j.bioelechem.2021.108011 Hubenova, 2022, Draft Genome Sequence of Paenibacillus profundus YoMME, a New Exoelectrogenic Gram-Positive Bacterium, Microbiol. Resour. Announc., 11, 10.1128/mra.00235-22 Logan, 2019, Electroactive microorganisms in bioelectrochemical systems, Nat. Rev. Microbiol., 17, 307, 10.1038/s41579-019-0173-x Carlson, 2012, Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria, Proc. Natl. Acad. Sci. U. S. A., 109, 1702, 10.1073/pnas.1112905109 Faustino, 2021, Crossing the wall: Characterization of the multiheme cytochromes involved in the extracellular electron transfer pathway of Thermincola ferriacetica, Microorganisms, 9, 1, 10.3390/microorganisms9020293 Song, 2020, Enhanced Electrochemical Impedance Spectroscopy Analysis of Microbial Biofilms on an Electrochemically In Situ Generated Graphene Interface, ACS Sensors, 5, 1795, 10.1021/acssensors.0c00570 Rammelt, 1990, On the applicability of a constant phase element (CPE) to the estimation of roughness of solid metal electrodes, Electrochim. Acta, 35, 1045, 10.1016/0013-4686(90)90040-7 Margarit-Mattos, 2020, EIS and organic coatings performance: Revisiting some key points, Electrochim. Acta, 354, 10.1016/j.electacta.2020.136725 Stavrinidou, 2014, A physical interpretation of impedance at conducting polymer/electrolyte junctions, AIP Adv., 4, 017127, 10.1063/1.4863297 Abdul Halim, 2021, Basics of teaching electrochemical impedance spectroscopy of electrolytes for ion-rechargeable batteries - Part 2: Dielectric response of (non-) polymer electrolytes, Chem. Teach. Int., 3, 117, 10.1515/cti-2020-0018 Shukla, 2022, Handbook of Cell Biosensors, Handb. Cell Biosens., 141, 10.1007/978-3-030-23217-7_122