Các ứng dụng lưu trữ năng lượng điện hóa của graphene “nguyên chất” được sản xuất bằng các phương pháp không oxy hóa

Science China Technological Sciences - Tập 58 - Trang 1841-1850 - 2015
Fei Liu1, DongFeng Xue1
1State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China

Tóm tắt

Graphene là một vật liệu hứa hẹn là cả thành phần hoạt động và phụ gia trong các thiết bị lưu trữ năng lượng điện hóa. Các tính chất của graphene phụ thuộc mạnh mẽ vào các phương pháp chế tạo. Các ứng dụng của graphene oxit giảm đã được nghiên cứu và xem xét kỹ lưỡng, nhưng việc sử dụng graphene “nguyên chất” làm vật liệu điện cực cho lưu trữ năng lượng vẫn là một chủ đề mới. Trong bài báo này, chúng tôi xem xét những tiến bộ hiện tại trong việc chế tạo graphene “nguyên chất” bằng nhiều phương pháp khác nhau và hiệu suất điện hóa của các điện cực dựa trên graphene. Những thành tựu trong lĩnh vực này sẽ được tóm tắt và so sánh với phương pháp graphene oxit về chi phí, khả năng mở rộng, tính chất vật liệu và hiệu suất, cũng như những thách thức trong các phương pháp này sẽ được thảo luận.

Từ khóa

#graphene #điện cực #lưu trữ năng lượng điện hóa #graphene oxit #phương pháp chế tạo

Tài liệu tham khảo

Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc Natl Acad Sci USA, 2005, 102: 10451–10453 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669 Lee J, Tao L, Hao Y, et al. Embedded-gate graphene transistors for high-mobility detachable flexible nanoelectronics. Appl Phys Lett 2012, 100: 152104–152107 Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum hall effect in graphene. Science, 2007, 15: 1379 Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in grapheme. Nature, 2005, 438: 197–200 Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146: 351–355 Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage. Nat Mater, 2015, 14: 271–279 Tan C, Zhang H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev, 2015, 44: 2713–2731 Dubal D P, Ayyad O, Ruiz V, et al. Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev, 2015, 44: 1777–1790 Liu F, Xue D. An electrochemical route to quantitative oxidation of graphene frameworks with controllable C/O ratios and added pseudocapacitances. Chem Eur J, 2013, 19: 10716–10722 Chen K, Liu F, Song S, et al. Water crystallization to create ice spacers between graphene oxide sheets for highly electroactive graphene paper. CrystEngComm, 2014, 16: 7771–7776 Liu F, Song S, Xue D, et al. Folded structured graphene paper for high performance electrode materials. Adv Mater, 2012, 24: 1089–1094 Chen K, Liu F, Xue D, et al. Carbon with ultrahigh capacitance when graphene paper meets K3Fe(CN)6. Nanoscale, 2015, 7: 432–439 Chen K, Xue D. Preparation of colloidal graphene in quantity by electrochemical exfoliation. J Colloid Interface Sci, 2014, 436: 41–46 Liu F, Zhu J, Xue D. MnO2-graphene nanocomposites by ripening of amorphous MnO2 in mild conditions. Graphene, 2013, 1: 58–64 Liu F, Xue D. Advanced graphene nanomaterials for electrochemical energy storage. Mater Res Innovations, 2015, 19: 7–19 Liu F, Zhu J, Xue D. Fabrication of MnO2-graphene nanocomposite by ripening of amorphous MnO2 in graphene oxide matrix. Sci Adv Mater, 2013, 5: 904–908 Chen K, Xue D. In-situ electrochemical route to aerogel electrode materials of graphene and hexagonal CeO2. J Colloid Interface Sci, 2015, 446: 77–83 Park S, Ruoff R S. Chemical methods for the production of graphenes. Nat Nanotechnol, 2009, 4: 217–24 Singh V V, Joung D, Zhai L, et al. Graphene based materials: Past, present and future. Prog Mater Sci, 2011, 56: 1178–271 Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene. Chem Rev, 2010, 110: 132–145 Norimatsu W, Kusunoki M. Epitaxial graphene on SiC{0001}: advances and perspectives. Phys Chem Chem Phys, 2014, 16: 3501–3511 Zhang Y, Zhang L, Zhou C. Review of chemical vapor deposition of graphene and related applications. Acc Chem Res, 2013, 46: 2329–2339 Choucair M, Thordarson P, Stride J A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol, 2009, 4: 30–33 Cai M, Thorpe D, Adamson D H, et al. Methods of graphite exfoliation. J Mater Chem, 2012, 22: 24992–25002 Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 2008, 3: 563–568 Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45: 1558–1565 Ciriminna R, Zhang N, Yang M Q, et al. Commercialization of graphene- based technologies: A critical insight. Chem Commun, 2015, 51: 7090–7095 Chen K, Song S, Liu F, et al. Structural design of graphene for use in electrochemical energy storage devices. Chem Soc Rev, 2015, 44: 6230–6257 Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage. Nat Mater, 2015, 14: 271–279 Zhong Y L, Tian Z, Simon G P, et al. Scalable production of graphene via wet chemistry: progress and challenges. Materials Today, 2015, 18: 73–78 Thrower P, Loader R T. Interstitial atom energies in graphite. Carbon, 1969, 7: 467–477 Liu F, Lee C W, Im J S. Graphene-based carbon materials for electrochemical energy storage. J Nanomater, 2013, 2013: 106 Loh K P, Bao Q, Ang P K, et al. The chemistry of graphene. J Mater Chem, 2010, 20: 2277–2289 Hou J, Shao Y, Ellis M W, et al. Graphene-based electrochemical energy conversion and storage: Fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys, 2011, 13: 15384–15402 Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature, 2006, 442: 282–286 Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide. Chem Soc Rev, 2010, 39: 228–240 Eigler S, Hirsch A. Chemistry with graphene and graphene oxidechallenges for synthetic chemists. Angew Chem Int Ed, 2014, 53: 7720–7738 Abdelkader A M, Cooper A J, Dryfe R A W, et al. How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale, 2015, 7: 6944–6956 Subramanya B, Krishna Bhat D. Novel eco-friendly synthesis of graphene directly from graphite using 2,2,6,6-tetramethylpiperidine 1-oxyl and study of its electrochemical properties. J Power Sources, 2015, 275: 90–98 Liu F, Kim J G, Lee C W, et al. A mesoporous WO3-X/graphene composite as a high-performance Li-ion battery anode. Appl Surf Sci, 2014, 316: 604–609 Chen K, Xue D. In-situ electrochemical route to aerogel electrode materials of graphene and hexagonal CeO2. J Colloid Interface Sci, 2015, 446, 77–83 Chen K, Song S, Xue D. Beyond graphene: materials chemistry toward high performance inorganic functional materials. J Mater Chem A, 2015, 3: 2441–2453 Khan U, O’Neill A, Lotya M, et al. High-concentration solvent exfoliation of graphene. Small, 2010, 6: 864 Duan Z Q, Sun Y C, Liu Y T, et al. Scalable production of transition metal disulphide/graphite nanoflake composites for high-performance lithium storage. RSC Adv, 2014, 4: 41543 Hernandez Y, Lotya M, Rickard D, et al. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir, 2010, 26: 3208 Pan L, Zhu X D, Xie X M, et al. Smart hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets: hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv Funct Mater, 2015, 25: 3341–3350 Du W, Qi S, Zhou B, et al. A surfactant-free water-processable allcarbon composite and its application to supercapacitor. Electrochim Acta, 2014, 146: 353–358 Chen I P, Chen Y S, Kao N J, et al. Scalable and high-yield production of exfoliated graphene sheets in water and its application to an all-solid-state supercapacitor. Carbon, 2015, 90: 16–24 Xu S, Xu Q, Wang N, et al. Reverse-micelle-induced exfoliation of graphite into graphene nanosheets with assistance of supercritical CO2. Chem Mater, 2015, 27: 3262–3272 Zhao W, Fang M, Wu F, et al. Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem, 2010, 20, 5817–5819 Jeon I Y, Shin Y R, Sohn G J, et al. Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci USA, 2012, 109: 5588–5593 Chen J, Duan M, Chen G. Continuous mechanical exfoliation of graphene sheets via three-roll mill. J Mater Chem, 2012, 22: 19625–19628 Bhattacharjya D, Jeon I Y, Park H Y, et al. Graphene nanoplatelets with selectively functionalized edges as electrode material for electrochemical energy storage. Langmuir, 2015, 31: 5676–5683 Low C T J, Walsh F C, Chakrabarti M H, et al. Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon, 2013, 54: 1–21 Parvez K, Wu Z S, Li R, et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc, 2014, 136, 6083–6091 Parvez K, Li R, Puniredd S R, et al. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano, 2013, 7: 3598–3606 Wang J, Manga K K, Bao Q, et al. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc, 2011, 133: 8888–8891 Liu N, Luo F, Wu H, et al. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater, 2008, 18: 1518–1525 Mao M, Wang M, Hu J, et al. Simultaneous electrochemical synthesis of few-layer graphene flakes on both electrodes in protic ionic liquids. Chem Commun, 2013, 49: 5301–5303 Lu J, Yang J X, Wang J, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 2009, 3: 2367–2375 Wei D, Grande L, Chundi V, et al. Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices. Chem Commun, 2012, 48: 1239–1241 Wang J, Huang J, Yan R, et al. Graphene microsheets from natural microcrystalline graphite minerals: scalable synthesis and unusual energy storage. J Mater Chem A, 2015, 3: 3144–3150 Jung S M, Mafra D L, Lin C T, et al. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance. Nanoscale, 2015, 7: 4386–4393