Electrochemical characterization of conversion coatings of phosphates plus nanostructured TiO2 over magnesium in a simulated body fluid

Springer Science and Business Media LLC - Tập 27 - Trang 3091-3099 - 2023
B. P. Domínguez Capitaine1, A. G. Martínez López2, J. C. Tinoco Magaña2, G. Galicia Aguilar1, J. L. Ramírez Reyes1
1Instituto de Ingeniería, Unidad Anticorrosión, Universidad Veracruzana, Veracruz, México
2Centro de Investigación en Micro y Nanotecnología (MICRONA), Universidad Veracruzana, Veracruz, México

Tóm tắt

Temporary or biodegradable implants have emerged as an alternative to the problems presented by permanent implants made of metals highly resistant to corrosion such as Pt, Ti, or Cr–Mo, since the latter must remain in the body for 1–2 years and removed after bone regeneration. Currently, magnesium is being studied due to its biocompatibility and mechanical properties similar to those of bone tissue, which make it an ideal candidate for temporary biodegradable implants. In this work, phosphate conversion coatings were prepared on Mg samples, using different immersion times in the phosphating bath with a pH of 3.5. In the electrochemical response of the phosphates, it was observed that the anticorrosive resistance only offered protection within the first 24 h of exposure. To help increase the resistance of phosphated, titanium dioxide (TiO2) nanoparticles were deposited by electrospray on the surface of the phosphated Mg with the purpose of sealing the porosities that are formed with the chemical treatment, observing an improvement in anticorrosive protection, increasing efficiency by up to 50% compared to phosphated coating without TiO2.

Tài liệu tham khảo

Li SG (2007) Corros Sci 49:1696 Liu CL, Wang YJ, Zeng RC, Zhang XM, Huang WJ (2010) Corros Sci 52:3341 Witte F, Fischer J, Nellesen J, Crostack HA (2006) Biomaterials 27:1013 Carboneras M, Iglesias C, Onofre BE, Alobera MA (2011) Acta científica y Tecnológica 19:30 Xu L, Liu X, Sun K, Fu R, Wang G (2022) 15:2613. https://doi.org/10.3390/ma15072613 Gutierrez Pua MC, Rincon Montenegro JC, Fonseca Reyes AN, Zambrano Rodriguez H, Paredes Mendez VN (2023) J Mater Sci 58:3879–3908. https://doi.org/10.1007/s10853-02308237-5 Zhang E (2015) Woodhead Publishing Series in Biomaterials, p 23–57 Ali M, Elsherif M, Salih AE, Ul-Hamid A, Hussein MA, Park S, Butt H (2020) J Alloys Compd 825:154140 Li Q (2013) Corrosion Prevention of Magnesium Alloys (pp 469–485). Woodhead Publishing Zandi P, Hosseini E, Rashchi F (2018) AIP Conference Proceedings, vol 1920, no. 1. AIP Publishing LLC, p 020021 Wiranwetchayan O, Promnopat S, Thongtem T, Chaipanich A, Thongtem S (2020) Mater Chem Phys 240:122219 Kokubo T, Takadama H (2006) Biomaterials 27:2907 Song G, Atrens A (2007) Adv Eng Mater 9:177 Tian P, Liu X (2015) Regen Biomater 2:135 Espinoza A, Negrón G, González R, Ángeles D, Herrera H, Romero M, Palomar M (2014) Mater Chem Phys 145(3):407–417 Cao F, Shi Z, Hofstetter J, Uggowitzer PJ (2013) Corros Sci 75:78 Epelboin I, Keddam M (1970) J Electrochem Soc 117:1052–1056 Chaparro A, Zamora G, Franco F (2012) Ingeniare. Rev Chil Ing 20(1) Armstrong RD, Bell MF, Metcalfe A (1978) The Chemical Society, London, p 99–128 Mark O, Bernard T (2008) Electrochemical impedance spectroscopy. John Wiley & Sons, Inc., Canada Boukamp B (1989) Equivalent Circuit. Users Manual, University of Twente Brugg GJ, Van Den Eeden AL, Sluyters-Rehbach M, Sluyters JH (1984) J Electrochemical Chem 176:275–295 Galicia G, Pebére N, Tribolett B, Vivier V (2006) ECS Trans 1(4):157–168 Zheng Y (2015) Magnesium alloys as degradable biomaterials, ed. CRC Press (1st ed.) Quintana-Camacho H, Ramirez-Reyes JL, Medina-Almazan L, Garcia-Navarro N, Galicia-Aguilar G (2018) Int J Electrochem Sci 13:6072–6082. https://doi.org/10.20964/2018.06.53