Electrochemical capacitive performance of free-standing polyindole film and effect of introducing alkyl chain connecting two indoles

Journal of Materials Science: Materials in Electronics - Tập 30 - Trang 7850-7857 - 2019
Lie Zou1, Xuemin Duan1, Weiqiang Zhou2, Hui Zhang3, Shuai Chen1, Jingdang Chai1, Xing Liu2, Liang Shen2, Jingkun Xu2,4, Ge Zhang2
1School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, People’s Republic of China
2School of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, People’s Republic of China
3National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, People’s Republic of China
4College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, People’s Republic of China

Tóm tắt

Polyindole (PIn), combining the good properties of polypyrrole and poly(para-phenylene), has been gained significant attention. But the capacitive performances of PIn and its derivatives electropsynthesized in boron trifluoride diethyl etherate (BFEE) were unknown so far. So we first prepared the free-standing PIn film in BFEE and studied its capacitive property. The specific capacitance value of PIn could achieve 270.2 F g−1 at high current density of 10 A g−1. And the capacitance retained of PIn 84.06% after 3000 cycles. For further studying the effect of introducing alkyl chains on the electrochemical properties of PIn, poly1,3-di(1H-indol-1-yl)propane (P(IP-3)), poly1,6-di(1H-indol-1-yl)hexane (P(IH-6)), and poly1,12-di(1H-indol-1-yl)dodecane (P(ID-12)) bridged by alkyl chains with different lengths were electrosynthesized in BFEE. Through a series of experiments, we found that the specific capacitance performances of P(IP-3), P(IH-6), and P(ID-12) were poorer than PIn, indicating the introduction of alkyl chains altered the electrochemical properties of the π-conjugated backbone of PIn and lowered its the properties, which could be proved by scanning electron microscope.

Tài liệu tham khảo

H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc. Chem. Commun. 16, 578 (1977) H.J. Qin, M.X. Wan, B. Matthew, L.M. Dai, Macromolecules 34, 675 (2001) M. Kertesz, C.H. Choi, S.J. Yang, Chem. Rev. 105, 3448 (2005) N. Lupshak, O. Aksimentyeva, Synth. Met. 119, 95 (2001) S. Surya, D.W. Geoffrey, K. Serge, J. Polym. Sci. Part A: Polym. Chem. 41, 1867 (2003) C.P. Frick, A.L. DiRienzo, A.J. Hoyt, D.L. Safranski, M. Saed, E.J. Losty, C.M. Yakacki, J. Biomed. Mater. Res. Part A. 102, 3122 (2014) H. Ahn, R.R. Patel, A.J. Hoyt, A.S.P. Lin, F.B. Torstrick, R.E. Guldberg, C.P. Frick, R.D. Carpenter, C.M. Yakacki, N.J. Willett, Acta Biomater. 72, 352 (2018) Y. Naka, M. Fuchiwaki, K. Tanaka, Polym. Int. 59, 352 (2010) F.X. Gao, Z. Ning, X.D. Fang, M.M. Ma, ACS Appl. Mater. Inter. 9, 5692 (2017) M. Genovese, K. Lian, Curr. Opin. Solid State Mater. Sci. 19, 126 (2015) J.K. Xu, G.M. Nie, S.S. Zhang, X.J. Han, J. Hou, S.Z. Pu, J. Polym. Sci. Part A: Polym. Chem. 43, 1444 (2005) Z.J. Cai, G. Yang, Synth. Met. 160, 1902 (2010) W.Q. Zhou, Y.K. Du, H.M. Zhang, J.K. Xu, P. Yang, Electrochim. Acta 55, 2911 (2010) P.S. Abthagir, R. Saraswathi, Org. Electron. 5, 299 (2004) Z.J. Cai, X.J. Shi, Y.N. Fan, J. Power Sources 227, 53 (2013) W.Q. Zhou, J.K. Xu, Polym. Rev. 57, 248 (2017) S.P. Koiry, V. Saxena, D. Sutar, S. Bhattacharya, D.K. Aswal, S.K. Gupta, J.V. Yakhmi, J. Appl. Polym. Sci. 103, 595 (2007) G. Zhang, B.Y. Lu, Y.P. Wen, L.M. Lu, J.K. Xu, Sens. Actuators, B 171, 786 (2012) G. Zhang, Y.P. Wen, Y.Z. Li, J.K. Xu, C.Q. Guo, B.Y. Lu, D.H. Zhu, J. Fluoresc. 23, 1053 (2013) J. Heinze, B.A. Frontana-Uribe, S. Ludwigs, Chem. Rev. 110, 4724 (2010) Z.J. Cai, X.J. Shi, R.H. Zhang, Mater. Lett. 92, 271 (2013) J. Arjomandi, D. Nematollahi, A. Amani, J. Appl. Polym. Sci. 131, 40094 (2014) G.Q. Shi, C. Li, Y.Q. Liang, Adv. Mater. 11, 1145 (1999) H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Energy Environ. Sci. 6, 1185 (2013) J.K. Xu, Z.H. Wei, Y.K. Du, S.Z. Pu, Mater. Lett. 61, 2486 (2007) G. Ye, Q.J. Zhou, D.Q. Li, Y.X. Zuo, X.M. Duan, W.Q. Zhou, J.K. Xu, New J. Chem. 42, 4824 (2018) Y.J. Hu, D.F. Hu, S.L. Ming, X.M. Duan, F. Zhao, J. Hou, J.K. Xua, F.X. Jiang, Electrochim. Acta 189, 64 (2016) J. Bloxham, C.J. Moody, A.M.Z. Slawin, Tetrahedron 58, 3709 (2002) W.W. Zhang, W.N. Zhang, Z.X. Xue, Y. Xue, N.N. Jian, K. Qu, H. Gu, S. Chen, J.K. Xu, Electrochim. Acta 278, 313 (2018) W.Q. Zhou, X.M. Ma, F.X. Jiang, D.H. Zhu, J.K. Xu, B.Y. Lu, C.C. Liu, Electrochim. Acta 138, 270 (2014) G. Zhang, H. Zhang, J. Zhang, W.C. Ding, J.K. Xu, Y.P. Wen, Sens. Actuators, B 253, 224 (2017) X.M. Ma, D.H. Zhu, Y. He, D.Z. Mo, Q.J. Zhou, X.M. Duan, J.K. Xu, W.Q. Zhou, J. Hou, Synth. Met. 218, 56 (2016) G.M. Nie, Z.M. Bai, W.Y. Yu, J. Chen, Biomacromolecular 14, 834 (2013) G.T. Yue, J.H. Wu, Y.M. Xiao, J.M. Lin, M.L. Huang, L.Q. Fan, Y. Yao, Chin. Sci. Bull. 58, 559 (2013)