Electrochemical behavior of anticancer drug 5-fluorouracil at carbon paste electrode and its analytical application

Shikandar D. Bukkitgar1, Nagaraj P. Shetti1
1Department of Chemistry, K.L.E Institute of Technology, Gokul, Hubli-580030, Karnataka, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allen JB, Larry RF. Electrochemical methods: fundamentals and applications. 2nd ed. New York: John Wiley and sons; 2004.

Badea I, Moja D, Tudose A, Stoicescu D. Determination of the 5-fluorouracil and N1(2′-furanidyl)uracil in the presence of tegafur by zero-crossing first derivative spectrometry. J Pharm Biomed Anal. 2002;30:1371.

Brown ER, Large RF, Weissberger A, Rossiter BW. Physical methods of chemistry. New York: Wiley Interscience. Rochester; 1964.

Christian GD, Purdy WC. The residual current in orthophosphate medium. J Electroanal Chem. 1962;3:363.

Díaz C, García C, Iturriaga-Vásquez P, Jesús Aguirre M, Pablo Muena J, Contreras R, et al. Experimental and theoretical study on the oxidation mechanism of dopamine in n-octyl pyridinium based ionic liquids–carbon paste modified electrodes. Electrochimi Acta. 2013;111:846.

Dönmez S, Arslan F, Sarı N, Kurnaz Yetim N, Arslan H. Preparation of carbon paste electrodes including poly(styrene) attached glycine–Pt(IV) for amperometric detection of glucose. Biosens Bioelectron. 2014;54:146.

Fars KA, Alaa EY, Mahmoud E-B, Hammam AM, Ibrahim AA. Validated high-performance liquid chromatographic technique for determination of 5-fluorouracil: applications to stability studies and simulated colonic media. J Chromatographic Science. 2009;47:558.

Genxi L, Peng M. Electrochemical analysis of proteins and cells. Berlin Heidelberg: Springer; 2013.

Gholivand MB, Mohammadi-Behzad L. Fabrication of a highly sensitive sumatriptan sensor based on ultrasonic-electrodeposition of Pt nanoparticles on the ZrO2 nanoparticles modified carbon paste electrode. J Electroanal Chem. 2014;712:33.

Hartmann KU, Heidelberger C. Studies on fluorinated pyrimidines: XIII. Inhibition of thymidylate synthetase. J Biol Chem. 1961;236:3006.

Hegde RN, Nandibewoor ST. Electrochemical oxidation of pentoxifylline and its analysis in pure and pharmaceutical formulations at a glassy carbon electrode. Anal Lett. 2008;41:977.

Hegde RN, Kumara Swamy BE, Shetti NP, Nandibewoor ST. Electro-oxidation and determination of gabapentin at gold electrode. J Electroanal Chem. 2009;635:51.

Heidlberg C, Ansfield FJ. Experimental and clinical use of fluorinated pyrimidines in cancer chemotherapy. Cancer Res. 1963;23:1226.

Hua X, Xiaolan H, Gong X, Shen G. Electrochemical behavior of 5-fluorouracil on a glassy carbon electrode modified with bromothymol blue and multi-walled carbon nanotubes. Anal Methods. 2013;5:2470.

Ioana P, Smaranda C, Simona CP, Wolfgang K. Raman, surface enhanced Raman spectroscopy, and DFT calculations: a powerful approach for the identification and characterization of 5-fluorouracil anticarcinogenic drug species. J Phys Chem A. 2005;109:9945.

Khoobi A, Ghoreishi SM, Masoum S, Behpour M. Multivariate curve resolution-alternating least squares assisted by voltammetry for simultaneous determination of betaxolol and atenolol using carbon nanotube paste electrode. Bioelectrochemistry. 2013;94:100.

Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusion less electrochemical systems. J Electroanal Chem. 1979;101:19.

Malode SJ, Nandibewoor ST. Electrochemical oxidation and determination of nimesulide using a carbon paste electrode. Z Phys Chem. 2013;227:73.

Malode SJ, Abbar JC, Shetti NP, Nandibewoor ST. Voltammetric oxidation and determination of loop diuretic furosemide at a multi-walled carbon nanotubes paste electrode. Electrochim Acta. 2012a;60:95.

Malode SJ, Shetti NP, Nandibewoor ST. Voltammetric behavior of theophylline and its determination at multi-wall carbon nanotube paste electrode. Colloids Surf B: Biointerfaces. 2012b;97:1.

Mazloum-Ardakani M, Beitollahi H, Amini MK, Mirkhalaf F, Abdollahi-Alibeik M. New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles modified carbon paste electrode. Sens Actuators B. 2010;151:243.

Mokhtari A, Karimi-Maleh H, Ensafi AA, Beitollahi H. Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples. Sens Actuators B. 2012;169:96.

Myers CE. The pharmacology of the fluoropyrimidines. Pharmacol Rev. 1981;33:1.

Padmini V. Synthesis and characterization of new Schiff’s bases containing an azo group. Archives of Applied Science Research. 2010;2:356.

Raoof JB, Ojani R, Beitollahi H. L-cysteine voltammetry at a carbon paste electrode bulk-modified with ferrocenedicarboxylic acid. Electroanalysis. 2007;19:1822.

Rutman RJ, Cantarow A, Paschkis KE. Studies in 2-acetylaminofluorene carcinogenesis: III .The utilization of uracil-2-C14 by preneoplastic rat liver and rat hepatoma. Cancer Res. 1954;14:119.

Sataraddi SR, Nandibewoor ST. Voltammetric-oxidation and determination of 5-flurouracil and its analysis in pharmaceuticals and biological fluids at glassy carbon electrode mediated by surfactant cetyltrimethyl ammonium bromide. Der pharma chemica. 2011;3:253.

Shetti NP, Sampangi LV, Hegde RN, Nandibewoor ST. Electrochemical oxidation of loop diuretic furosemide at gold electrode and its analytical applications. Int J Electrochem Sci. 2009;4:104.

Shetti NP, Malode SJ, Nandibewoor ST. Electrochemical behavior of an antiviral drug acyclovir at fullerene-C60-modified glassy carbon electrode. Bioelechem. 2012;88:76.

Tianrong Z, Lili C, Wei S, Wanguo H. Electrochemical behavior of 5-fluoro-1H-pyrimidine-2 on an ionic liquid modified carbon paste electrode. Analytical Methods. 2011;3:2651.

Voet D, Voet JG. Biochemistry. 2nd ed. New York: John Wiley, and sons; 1995.