Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hành vi điện hóa và sự tiến hóa cấu trúc của các hợp chất polyaniline/cacbon trong điện phân lỏng ion
Tóm tắt
Các hợp chất polyaniline/cacbon (Pani/C) được tổng hợp bằng phản ứng polymer hóa oxy hóa của anilin trong sự có mặt của vật liệu cacbon ở các giá trị pH khác nhau. Các hợp chất thu được có thành phần giống nhau (56 wt% polymer được xác định bằng phân tích nguyên tố CHNS) nhưng khác nhau về hình thái và cấu trúc rỗng. Carbon hoạt hóa có nguồn gốc từ sinh khối với diện tích bề mặt riêng là 1740 m2 g−1 được sử dụng làm thành phần cacbon. Cấu trúc rỗng được đặc trưng bởi sự hấp phụ nitơ ở nhiệt độ thấp 77 K. Hành vi điện hóa của các mẫu được nghiên cứu bằng phương pháp voltammetry chu kỳ trong một ngăn ba điện cực trong các chất điện phân khác nhau: dung dịch 1 M H2SO4 và dung dịch 1 M của 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) trong acetonitrile (ILE). Dựa trên dữ liệu voltammetry chu kỳ, cơ chế biến đổi polyaniline trong ILE có sự tham gia của BMIM+ như một nguồn proton đã được đề xuất. Siêu tụ điện đối xứng (SC) được lắp ráp với các điện cực Pani/C và ILE. Nghiên cứu về SC bằng các kỹ thuật điện hóa và điều tra cấu trúc điện cực trước và sau các bài kiểm tra ổn định thực hiện bằng phương pháp quang phổ hồng ngoại biến đổi Fourier đã cho phép phát hiện các quy luật chính về hiệu suất SC và sự tiến hóa của tính chất vật liệu.
Từ khóa
#polyaniline #cacbon #hợp chất #điện hóa #siêu tụ điện #điện phân lỏng ionTài liệu tham khảo
Horn M, MacLeod J, Liu M et al (2019) Economic analysis and policy. Econ Anal Policy 61:93–103
Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications chemical functional materials. R Soc Chem 45:5925–5950
Liu P, Yan J, Guang Z et al (2019) Recent advancements of polyaniline-based nanocomposites for supercapacitors. J Power Sources 424:108–130
Lindfors T, Ivaska A (2002) pH sensitivity of polyaniline and its substituted derivatives. J Electroanal Chem 531:43–52
Li H, Wang J, Chu Q et al (2009) Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sources 190:578–586
Roßberg K, Paasch G, Dunsch L, Ludwig S (1998) The influence of porosity and the nature of the charge storage capacitance on the impedance behaviour of electropolymerized polyaniline films. J Electroanal Chem 443:49–62
Bal Sydulu S, Palaniappan S, Srinivas P (2013) Nano fibre polyaniline containing long chain and small molecule dopants and carbon composites for supercapacitor. Electrochim Acta 95:251–259
Hua LJ, Ying XX, Lu W et al (2018) A high performance all-solid-state flexible supercapacitor based on carbon nanotube fiber/carbon nanotubes/polyaniline with a double core-sheathed structure. Electrochim Acta 283:366–373
Xu H, Li X, Wang G (2015) Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors. J Power Sources 294:16–21
Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44(21):7484–7539
Kai W, Haiping W, Yuena M, Zhixiang W (2010) Conducting polymer nanowire arrays for high performance supercapacitors. J Phys Chem C 114:8062–8067
Wu G, Tan P, Wang D et al (2017) High-performance supercapacitors based on electrochemical-induced vertical-aligned carbon nanotubes and polyaniline nanocomposite electrodes. Sci Rep 7:1–8
Eletskii PM, Yakovlev VA, Fenelonov VB, Parmon VN (2008) Texture and adsorptive properties of microporous amorphous carbon materials prepared by the chemical activation of carbonized high-ash biomass. Kinet Catal 49:708–719
Yeletsky PM, Yakovlev VA, Mel’gunov MS, Parmon VN (2009) Synthesis of mesoporous carbons by leaching out natural silica templates of rice husk. Microporous Mesoporous Mater 121:34–40
Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069
Mel’gunov MS, Ayupov AB (2017) Direct method for evaluation of BET adsorbed monolayer capacity. Microporous Mesoporous Mater 243:147–153
Focke WW, Wnek GE, Wei Y (1987) Influence of oxidation state, pH, and counterion on the conductivity of polyaniline. J Phys Chem 91:5813–5818
Song E, Choi J (2013) Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3(3):498–523
Rahmanifar MS, Mousavi MF, Shamsipur M, Riahi S (2006) A study on the influence of anionic surfactants on electrochemical degradation of polyaniline. Polym Degrad Stab 91:3463–3468
Salamifar E, Mehrgardi MA, Mousavi MF (2009) Ion transport and degradation studies of a polyaniline-modified electrode using SECM. Electrochim Acta 54:4638–4646
Patil DS, Pawar SA, Patil SK et al (2015) Electrochemical performance of potentiodynamically deposited polyaniline electrodes in ionic liquid. J Alloys Compd 646:1089–1095
Arcila-Velez MR, Emmett RK, Karakaya M et al (2016) A facile and scalable approach to fabricating free-standing polymer - carbon nanotube composite electrodes. Synth Met 215:35–40
Fusalba F, Gouérec P, Villers D, Bélanger D (2002) Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. J Electrochem Soc 148:A1
Chowdhury S, Mohan RS, Scott JL (2007) Reactivity of ionic liquids. Tetrahedron 63:2363–2389
Canal JP, Ramnial T, Dickie DA, Clyburne JAC (2006) From the reactivity of N-heterocyclic carbenes to new chemistry in ionic liquids. Chem Commun (17):1809–1818
Patil DS, Pawar SA, Devan RS et al (2014) Improved electrochemical performance of activated carbon/polyaniline composite electrode. Mater Lett 117:248–251
Ning X, Zhong W, Wan L (2016) Ultrahigh specific surface area porous carbon nanospheres and its composite with polyaniline: preparation and application for supercapacitors. RSC Adv 6:25519–25524
Olad A, Gharekhani H (2016) Study on the capacitive performance of polyaniline/activated carbon nanocomposite for supercapacitor application. J Polym Res 23(8)
Wang X, Zhou H, Sheridan E, Walmsley JC, Ren D, Chen D (2016) Geometrically confined favourable ion packing for high gravimetric capacitance in carbon-ionic liquid supercapacitors. Energy Environ Sci 9(1):232–239
Bhandari S (2011) Polyaniline: structure and properties relationship. Elsevier Inc.
Yang C, Sun M, Wang G et al (2017) High energy-density organic supercapacitors based on optimum matching between GNS/aMWCNT@polyaniline nanocone arrays cathode and GNS/aMWCNT@poly(1,5-diaminoanthraquinone) nanoparticles anode. Chem Eng J 326:9–16
Salinas-Torres D, Sieben JM, Lozano-Castelló D et al (2013) Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre-PANI electrodes. Electrochim Acta 89:326–333
Sekar P, Anothumakkool B, Vijayakumar V et al (2016) Unravelling the mechanism of electrochemical degradation of PANI in supercapacitors: achieving a feasible solution. ChemElectroChem 3:933–942
Zhou S, Zhang H, Zhao Q et al (2013) Graphene-wrapped polyaniline nanofibers as electrode materials for organic supercapacitors. Carbon N Y 52:440–450
Wang K, Wu H, Meng Y, Wei Z (2010) Conducting polymer nanowire arrays for high performance supercapacitors. J Phys Chem C 114:8062–8067
Sluyters R (1994) Impedances of electrochemical systems: terminology, nomenclature and representation. Pure Appl Chem 66:1831–1891
Moganty SS, Baltus RE, Roy D (2009) Electrochemical windows and impedance characteristics of [Bmim+][BF4-] and [Bdmim+][BF4-] ionic liquids at the surfaces of Au, Pt, Ta and glassy carbon electrodes. Chem Phys Lett 483:90–94
Huang J, Li Z, Liaw BY, Zhang J (2016) Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations. J Power Sources 309:82–98
Trchová M, Morávková Z, Šeděnková I, Stejskal J (2012) Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chem Pap 66:415–445
Rakić AA, Trifunović S, Ćirić-Marjanović G (2014) Dopant-free interfacial oxidative polymerization of aniline. Synth Met 192:56–65
Dmitrieva E, Dunsch L (2011) How linear is “linear” polyaniline? J Phys Chem B 115(20):6401–6411
Mohamed MH, Dolatkhah A, Aboumourad T et al (2015) Investigation of templated and supported polyaniline adsorbent materials. RSC Adv 5:6976–6984
Trchová M, Šeděnková I, Konyushenko EN et al (2006) Evolution of polyaniline nanotubes: the oxidation of aniline in water. J Phys Chem B 110(19):9461–9468
Ding H, Shen J, Wan M, Chen Z (2008) Formation mechanism of polyaniline nanotubes by a simplified template-free method. Macromol Chem Phys 2009:864–871
Bogdanović U, Vodnik VV, Ahrenkiel SP et al (2014) Interfacial synthesis and characterization of gold/polyaniline nanocomposites. Synth Met 195:122–131
Baibarac M, Baltog I, Lefrant S et al (2004) SERS spectra of polyaniline/carbon nanotubes and polyaniline/fullerene composites. Mol Cryst Liq Cryctals 415:141–155
Tang H, Ding Y, Zang C et al (2014) Effect of temperature on electrochemical degradation of polyaniline. Int J Electrochem Sci 9:7239–7252
Tang J, Jing X, Wang B, Wang F (1988) Infrared spectra of soluble polyaniline. Synth Met 24:231–238
Chandrakanthi N, Careem MA (2000) Preparation and characterization of fully oxidized form of polyaniline. Polym Bull 45:113–120
Zhou S, Mo S, Zou W et al (2011) Preparation of polyaniline/2-dimensional hexagonal mesoporous carbon composite for supercapacitor. Synth Met 161:1623–1628
Li L, Song H, Zhang Q et al (2009) Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline composites as electrodes for supercapacitors. J Power Sources 187:268–274
Baibarac M, Baltog I, Lefrant S et al (2003) Polyaniline and carbon nanotubes based composites containing whole units and fragments of nanotubes. Chem Mater 15:4149–4156
Yoon SB, Yoon EH, Kim KB (2011) Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications. J Power Sources 196:10791–10797
Choi BG, Park HS, Im HS et al (2008) Influence of oxidation state of polyaniline on physicochemical and transport properties of Nafion/polyaniline composite membrane for DMFC. J Membr Sci 324:102–110
Vuillard S, Louarn G, Lefrant S, Macdiarmid AG (1994) Vibration analysis of polyaniline: a comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys Rev 8(50):496–508
Ayad MM, Shenashin MA (2004) Polyaniline film deposition from the oxidative polymerization of aniline using K2Cr2O7. Eur Polym J 40:197–202
Li RL, Lin C, Shao Y et al (2016) Characterization of aniline tetramer by MALDI TOF mass spectrometry upon oxidative and reductive cycling. Polymers (Basel) 8(11)
Wei Y, Hsueh KF, Jang GW (1994) A study of leucoemeraldine and the effect of redox reactions on the molecular weight of chemically prepared polyaniline. Macromolecules 27:518–525
Marcus Y (2012) Volumes of aqueous hydrogen and hydroxide ions at 0 to 200 °C. J Chem Phys 137:0–5
Chmiola J, Yushin G, Gogotsi Y et al (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science (80- ) 313:1760–1763