Electrochemical Pseudocapacitors Based on Ternary Nanocomposite of Conductive Polymer/Graphene/Metal Oxide: An Introduction and Review to it in Recent Studies

Chemical Record - Tập 19 Số 5 - Trang 908-926 - 2019
Ali Ehsani1, Ali Akbar Heidari1, Hamid Mohammad Shiri2
1Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
2Department of Chemistry, Payame Noor University, Iran

Tóm tắt

AbstractThis review gives an overview of the synthesis, surface and electrochemical investigations over ternary nanocomposite of conductive polymers in the development of new supercapacitors. They utilize both Faradaic and non‐Faradaic procedures to store charge, leading to higher specific capacitance and energy density, higher cell voltage, longer life cycle and moderated power density. Owing to a unique combination of features such as superb electrical conductivity, corrosion resistance in aqueous electrolytes, highly modifiable nanostructures, long cycle life and the large theoretical specific‐surface area, the use of ternary nanocomposites as a supercapacitor electrode material has become the focus of a significant amount of current scientific researches in the field of energy storage devices. In these nanocomposites, graphene not only can be utilized to provide a substrate for growing nanostructured polymers in a polymer‐carbon nanocomposite structure in order to overcome the insulating nature of conductive polymers at dedoped states, but also is capable of providing a platform for the decoration of metal oxide nanoparticles to avoid their agglomeration. In this regard, synthesis, characterization and performance of different ternary nanocomposites of conductive polymer/graphene/metal oxide are discussed in detail. These remarkable results demonstrate the exciting commercial potential for high performance, environmentally friendly and low‐cost electrical energy storage devices based on ternary nanocomposite of conductive polymer/graphene/metal oxide.

Từ khóa


Tài liệu tham khảo

10.1155/2013/653890

10.1021/acs.jpcc.7b00534

10.1039/C4TA06923D

10.1016/j.jcis.2017.07.001

10.1007/s10854-016-5239-1

10.1021/nl2026635

10.1039/C6RA03330J

10.1007/s11581-018-2459-9

10.1016/j.jcis.2017.10.046

10.1016/j.electacta.2016.09.030

10.1016/j.jcis.2017.10.076

10.1039/C5CC02717A

10.1016/j.electacta.2015.01.080

10.1039/c3ra47764a

10.1016/j.jcis.2017.04.014

10.1016/j.jcis.2016.11.024

Jayalakshmi M., 2008, Int. J. Electrochem. Sci., 3, 1196, 10.1016/S1452-3981(23)15517-9

10.1039/C5RA20498D

10.1007/s10853-017-1514-7

10.1016/j.electacta.2016.05.213

10.1002/adma.201402847

10.1039/C5RA18694C

10.1016/j.ijhydene.2017.07.008

10.1016/j.electacta.2013.07.012

10.1016/j.cej.2016.06.060

10.1021/jp511022z

10.1016/j.synthmet.2015.06.010

10.1016/j.compositesb.2016.10.036

10.1016/j.jcis.2016.03.065

10.1246/bcsj.20160082

10.1002/adfm.201302158

10.1021/am500579c

10.5714/CL.2012.13.3.157

10.1016/j.matlet.2014.04.086

10.1016/j.electacta.2015.08.029

10.1016/j.jpowsour.2013.04.122

10.1039/c2jm16216d

10.1039/c2ra21292g

10.1016/j.jpowsour.2013.07.064

10.1016/j.jpowsour.2014.10.183

10.1016/j.nanoen.2011.11.001

10.1016/j.electacta.2011.12.011

10.1016/j.jcis.2016.12.003

Brodie B., 1860, Ann. Chim. Phys., 59, 472

10.1002/cber.18980310237

10.1021/ja01539a017

10.1016/j.eurpolymj.2011.05.011

10.1002/pi.4602

10.1007/s00396-011-2469-x

10.1002/app.38174

10.1039/C5RA07989F

10.1016/j.jallcom.2017.03.062

10.1016/j.jcis.2017.06.086

10.1016/j.jpowsour.2015.12.059

10.1016/j.electacta.2015.12.143

10.1016/j.mtener.2017.06.007

10.1016/j.ceramint.2013.08.026

10.1039/C1CS15060J

Kowsari E., 2017, J. Colloid Interface Sci., 504

Zheng W., 2016, Mater. Res. Bull., 80

10.1016/j.jcis.2017.01.097

10.1246/bcsj.20170391

10.1016/j.jpowsour.2015.11.002

10.1021/acs.jpcc.6b10978

10.1039/c4cp00280f

10.1016/j.electacta.2016.06.026

10.1039/c2jm33064d

10.1007/s10008-015-3094-2

10.1007/s10854-017-7927-x