Electrochemical Deposited Amorphous Bimetallic Nickle-Iron (Oxy)hydroxides Electrocatalysts for Highly Efficient Oxygen Evolution Reaction
Tóm tắt
The low-cost and high-performance electrocatalysts, especially metal (oxy)hydroxides, for the oxygen evolution reaction (OER) have attracted considerable attention due to their promising OER activity. Amorphous electrocatalysts are often superior to their crystalline counterparts due to their more actives and structural flexibility. However, using traditional preparation techniques still presents a significant barrier. Herein, the amorphous NiFe (oxy)hydroxides on nickel foam (NF) with large surface area and small charge transfer resistance were fabricated by electrodeposition technique. The as-fabricated NiFe (oxy)hydroxides (Ni:Fe = 1:3) exhibited remarkable electrocatalytic activity and stability for OER with a low overpotential of 245 mV at a current density of 100 mA cm–2, a small Tafel slope of 76.9 mV dec−1, which was superior to that of noble metal electrocatalysts (RuO2) and most NiFe-based electrocatalysts. This work provides a facile and effective way to synthesis metal (oxy)hydroxide catalysts towards high-efficiency water splitting.
Tài liệu tham khảo
P. Chen, K. Xu, T. Zhou, Y. Tong, J. Wu, H. Cheng et al., Strong-coupled cobalt borate nanosheets/graphene hybrid as electrocatalyst for water oxidation under both alkaline and neutral conditions. Angew. Chem. Int. Ed. 55, 2488–2492 (2016)
A. Indra, P.W. Menezes, N.R. Sahraie, A. Bergmann, C. Das, M. Tallarida et al., Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc. 136, 17530–17536 (2014)
C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu, K. Liu et al., Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy. Environ. Sci. 13, 86–95 (2020)
X. Li, Y. Wang, J. Wang, Y. Da, J. Zhang, L. Li et al., Sequential electrodeposition of bifunctional catalytically active structures in MoO3/Ni-NiO composite electrocatalysts for selective hydrogen and oxygen evolution. Adv. Mater. 32, 2003414 (2020)
C. Cai, M. Wang, S. Han, Q. Wang, Q. Zhang, Y. Zhu et al., Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS. Catal. 11, 123–130 (2021)
Y. Duan, Z.-Y. Yu, S.-J. Hu, X.-S. Zheng, C.-T. Zhang, H.-H. Ding et al., Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew. Chem. Int. Ed. 58, 15772–15777 (2019)
Y. Tian, X. Liu, L. Xu, D. Yuan, Y. Dou, J. Qiu et al., Engineering crystallinity and oxygen vacancies of Co(II) oxide nanosheets for high performance and robust rechargeable Zn-air batteries. Adv. Funct. Mater. 31, 2101239 (2021)
H. Yang, L. Gong, H. Wang, C. Dong, J. Wang, K. Qi et al., Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution. Nat. Commun. 11, 5075–5084 (2020)
S. Anantharaj, S. Kundu, S. Noda, “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano. Energy. 80, (2021)
Z. Cai, L. Li, Y. Zhang, Z. Yang, J. Yang, Y. Guo et al., Amorphous nanocages of Cu-Ni-Fe hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution. Angew. Chem. Int. Ed. 58, 4189–4194 (2019)
Z. Wu, Z. Zou, J. Huang, F. Gao, NiFe2O4 nanoparticles/NiFe layered double-hydroxide nanosheet heterostructure array for efficient overall water splitting at large current densities. ACS. Appl. Mater. Interfaces. 10, 26283–26292 (2018)
Q. Zhang, T. Li, J. Liang, N. Wang, X. Kong, J. Wang et al., Highly wettable and metallic NiFe-phosphate/phosphide catalyst synthesized by plasma for highly efficient oxygen evolution reaction. J. Mater. Chem. A. 6, 7509–7516 (2018)
W. Cai, R. Chen, H. Yang, H.B. Tao, H.Y. Wang, J. Gao et al., Amorphous versus crystalline in water oxidation catalysis: A case study of NiFe alloy. NANO. Lett. 20, 4278–4285 (2020)
X. Xu, T. Wang, L. Su, Y. Zhang, L. Dong, X. Miao, In situ synthesis of superhydrophilic amorphous NiFe prussian blue analogues for the oxygen evolution reaction at a high current density. ACS. Sustain. Chem. Eng. 9, 5693–5704 (2021)
J. Liu, J. Nai, T. You, P. An, J. Zhang, G. Ma et al., The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction. Small. 14, 1703514 (2018)
P.W. Menezes, C. Panda, C. Walter, M. Schwarze, M. Driess, A cobalt-based amorphous bifunctional electrocatalysts for water-splitting evolved from a single-source lazulite cobalt phosphate. Adv. Funct. Mater. 29, 1808632 (2019)
N. Yu, W. Cao, M. Huttula, Y. Kayser, P. Hoenicke, B. Beckhoff et al., Fabrication of FeNi hydroxides double-shell nanotube arrays with enhanced performance for oxygen evolution reaction. Appl. Catal. B-Environ. 261, 118193–118203 (2020)
M. Gorlin, P. Chernev, J. De Araujo Ferreira, T. Reier, S. Dresp, B. Paul et al., Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 138, 5603–14 (2016)
J. Ha, M. Kim, Y.-T. Kim, J. Choi, Ni0.67Fe0.33 hydroxide incorporated with oxalate for highly efficient oxygen evolution reaction. ACS. Appl. Mater. Interfaces. 13, 42870–9 (2021)
E. Lee, A.H. Park, H.U. Park, Y.U. Kwon, Facile sonochemical synthesis of amorphous NiFe-(oxy)hydroxide nanoparticles as superior electrocatalysts for oxygen evolution reaction. Ultrason. Sonochem. 40, 552–557 (2018)
M. Chen, S. Lu, X.Z. Fu, J.L. Luo, Core-shell structured NiFeSn@NiFe (oxy)hydroxide nanospheres from an electrochemical strategy for electrocatalytic oxygen evolution reaction. Adv. Sci. 7, 1903777 (2020)
Z. Yin, R. He, Y. Zhang, L. Feng, X. Wu, T. Wågberg et al., Electrochemical deposited amorphous FeNi hydroxide electrode for oxygen evolution reaction. J. Energy. Chem. 69, 585–592 (2022)
P. Thangavel, G. Kim, K.S. Kim, Electrochemical integration of amorphous NiFe (oxy)hydroxides on surface-activated carbon fibers for high-efficiency oxygen evolution in alkaline anion exchange membrane water electrolysis. J. Mater. Chem. A. 9, 14043–14051 (2021)
Y. Yang, H. Yao, Z. Yu, S.M. Islam, H. He, M. Yuan et al., Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 141, 10417–10430 (2019)
Y.-N. Zhou, W.-L. Yu, Y.-N. Cao, J. Zhao, B. Dong, Y. Ma et al., S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution. Appl. Catal. B-Environ. 292, 120150–120158 (2021)
X. Tian, Y. Liu, D. Xiao, J. Sun, Ultrafast and large scale preparation of superior catalyst for oxygen evolution reaction. J. Power. Sources. 365, 320–326 (2017)
M. Yang, M. Zhao, J. Yuan, J. Luo, J. Zhang, Z. Lu et al., Oxygen vacancies and interface engineering on amorphous/crystalline CrOx-Ni3N heterostructures toward high-durability and kinetically accelerated water splitting. Small. 2106554 (2022)
T. Zhou, Z. Cao, P. Zhang, H. Ma, Z. Gao, H. Wang et al., Transition metal ions regulated oxygen evolution reaction performance of Ni-based hydroxides hierarchical nanoarrays. Sci. Rep. 7, 46154–46163 (2017)
J. Masa, I. Sinev, H. Mistry, E. Ventosa, M. De La Mata, J. Arbiol et al., Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Adv. Energy. Mater. 7, (2017)
F. Hu, H. Wang, Y. Zhang, X. Shen, G. Zhang, Y. Pan et al., Designing highly efficient and long-term durable electrocatalyst for oxygen evolution by coupling B and P into amorphous porous NiFe-based material. Small. 15, e1901020 (2019)
L. Xu, F.-T. Zhang, J.-H. Chen, X.-Z. Fu, R. Sun, C.-P. Wong, Amorphous NiFe nanotube arrays bifunctional electrocatalysts for efficient electrochemical overall water splitting. ACS. Appl. Energy. Mater. 1, 1210–1217 (2018)
Y. Xu, Z. Cheng, J. Jiang, J. Du, Q. Xu, 2D Amorphous bi-metallic NiFe nitrides for a high-efficiency oxygen evolution reaction. Chem. Commun. 57, 13170–13173 (2021)
X. Chen, Z. Qiu, H. Xing, S. Fei, J. Li, L. Ma et al., Sulfur-doping/leaching induced structural transformation toward boosting electrocatalytic water splitting. Appl. Catal. B-Environ. 305, 121030–121041 (2022)
X. Zhu, C. Tang, H.-F. Wang, Q. Zhang, C. Yang, F. Wei, Dual-sized NiFe layered double hydroxides in situ grown on oxygen-decorated self-dispersal nanocarbon as enhanced water oxidation catalysts. J. Mater. Chem. A. 3, 24540–24546 (2015)
D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai, A.M. Wise et al., Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015)
M. Yao, N. Wang, W. Hu, S. Komarneni, Novel hydrothermal electrodeposition to fabricate mesoporous film of Ni0.8Fe0.2 nanosheets for high performance oxygen evolution reaction. Appl. Catal. B-Environ. 233, 226–33 (2018)
L. Yu, H. Zhou, J. Sun, I.K. Mishra, D. Luo, F. Yu et al., Amorphous NiFe layered double hydroxide nanosheets decorated on 3D nickel phosphide nanoarrays: A hierarchical core–shell electrocatalyst for efficient oxygen evolution. J. Mater. Chem. A. 6, 13619–13623 (2018)
A. Mahmood, Q. Yu, Y. Luo, Z. Zhang, C. Zhang, L. Qiu et al., Controllable structure reconstruction of nickel-iron compounds toward highly efficient oxygen evolution. Nanoscale. 12, 10751–10759 (2020)
N. Todoroki, T. Wadayama, Heterolayered Ni-Fe hydroxide/oxide nanostructures generated on a stainless-steel substrate for efficient alkaline water splitting. ACS. Appl. Mater. Inter. 11, 44161–44169 (2019)
W. Zhu, W. Chen, H. Yu, Y. Zeng, F. Ming, H. Liang et al., NiCo/NiCo–OH and NiFe/NiFe–OH core shell nanostructures for water splitting electrocatalysis at large currents. Appl. Catal. B-Environ. 278, 119326–119335 (2020)
D. Wang, Q. Li, C. Han, Q. Lu, Z. Xing, X. Yang, Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 10, 3899 (2019)
Z. Xing, C. Han, D. Wang, Q. Li, X. Yang, Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS. Catal. 7, 7131–7135 (2017)
J.R. Zeng, M.Y. Gao, Q.B. Zhang, C. Yang, X.T. Li, W.Q. Yang et al., Facile electrodeposition of cauliflower-like S-doped nickel microsphere films as highly active catalysts for electrochemical hydrogen evolution. J. Mater. Chem. A. 5, 15056–15064 (2017)
J. Yan, L. Kong, Y. Ji, J. White, Y. Li, J. Zhang et al., Single atom tungsten doped ultrathin alpha-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat. Commun. 10, 2149–2159 (2019)
L. Xu, J. Pengxia, W. Pengyan, T. Xin, C. Lei, M. Shichun, Spherical Ni3S2/Fe-NiPx magic cube with ultrahigh water/seawater oxidation efficiency. Adv. Sci. 9, 2104846–2104857 (2022)
K. Zhu, X. Zhu, W. Yang, Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem. Int. Ed. 58, 1252–1265 (2019)
Y. Guo, C. Zhang, J. Zhang, K. Dastafkan, K. Wang, C. Zhao et al., Metal-organic framework-derived bimetallic NiFe selenide electrocatalysts with multiple phases for efficient oxygen evolution reaction. ACS. Sustain. Chem. Eng. 9, 2047–2056 (2021)
Z. Gong, R. Liu, H. Gong, G. Ye, J. Liu, J. Dong et al., Constructing a graphene-encapsulated amorphous/crystalline heterophase NiFe alloy by microwave thermal shock for boosting the oxygen evolution reaction. ACS. Catal. 11, 12284–12292 (2021)
R. Liu, Y. Wang, D. Liu, Y. Zou, S. Wang, Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 29, 1701546 (2017)
