Electrochemical Degradation of Ammonia Nitrogen in Mariculture Wastewater Using an Activated Carbon Fiber Composite Anode

Surface Engineering and Applied Electrochemistry - Tập 55 - Trang 587-594 - 2019
Xiaocai Yu1, Hang Yang1, Jinghua Liu1, Liping Wang1, Meichen Guo1
1College of Marine Science and Environment, Dalian Ocean University, Dalian, China

Tóm tắt

This work studied the electrochemical degradation of $${\text{NH}}_{4}^{ + }$$ -N in mariculture wastewater using an activated carbon fiber composite anode. The effects of the operating parameters and by-products were investigated. Based on the analysis of the removal rate of $${\text{NH}}_{4}^{ + }$$ -N, energy consumption, and current efficiency under various operating conditions, the optimal conditions were ascertained as follows: an initial $${\text{NH}}_{4}^{ + }$$ -N concentration of 40 mg/L, a current density of 1.4 mA/cm2, a pH value of 8, no extra electrolyte, an electrode gap of 17 mm and the degradation rate of $${\text{NH}}_{4}^{ + }$$ -N could reach 94% after 90 min of electrolysis. At the same time, the energy consumption needed in the whole reaction process was extremely low and by-product mass generated from the reaction was negligible. In addition, dynamic fitting indicates the degradation procedure was in accordance with the first-order kinetic model.

Tài liệu tham khảo

Buosi, P.R.B., Pauleto, G.M., Lansac-Tôha, F.A., and Velho, L.F.M., Eur. J. Protistol., 2011, vol. 47, pp. 86–102. Crab, R., Avnimelech, Y., Defoirdt, T., Peter Bossier, P., et al., Aquaculture, 2007, vol. 270, nos. 1–4, pp. 1–14. Gregory, S.P., Shields, R.J., Fletcher, D.J., Gatland, P., et al., Ecol. Eng., 2010, vol. 36, pp. 1485–1491. Xu, H., Song, W., and Warren, A., Hydrobiologia, 2004, vol. 519, pp. 189–195. Wahab, M.A., Jellali, S., and Jedidi, N., Bioresour. Technol., 2010, vol. 101, pp. 8606–8615. Manju, N.J., Deepesh, V., Cini, A., Philip, R., et al., Aquaculture, 2009, vol. 294, pp. 65–75. Johir, M.A.H., Vigneswaran, S., Kandasamy, J., Benaim, R., et al., Desalination, 2013, vol. 322, pp. 13–20. Jang, D., Hwang, Y., Shin, H., and Lee, W., Bioresour. Technol., 2013, vol. 141, pp. 50–56. Shao, G., Lu, L., Qian, X., and Zhang, Y., J. Wuhan Univ. Technol. Mater. Sci., 2017, vol. 32, pp. 823–829. Compagnoni, M., Ramis, G., Freyria, F.S., Armandi, M., et al., Rend. Fis. Acc. Lincei, 2017, vol. 28, suppl. 1, pp. S151–S158. Wang, W., Ding, Y., Wang, Y., Song, X., et al., Ecol. Eng., 2016, vol. 94, pp. 7–11. Hong, Z., Han, L., Ma, H., Yan, Z., et al., J. Hazard. Mater., 2008, vol. 158, pp. 577–584. Mook, W.T., Chakrabarti, M.H., Aroua, M.K., Khan, G.M.A., et al., Desalination, 2012, vol. 285, pp. 1–13. Sirés, I., Brillas, E., Oturan, M.A., Rodrigo, M.A., et al., Environ. Sci. Pollut. Res., 2014, vol. 21, pp. 8336–8367. Ding, J., Zhao, Q.L., Zhang, J., Jiang, J.Q., et al., Environ. Sci. Pollut. Res., 2017, vol. 24, pp. 5098–5105. Vanlangendonck, Y., Corbisier, D., and Van, L.A., Water Res., 2005, vol. 39, pp. 3028–3034. Vlyssides, A.G. and Israilides, C.J., Environ. Pollut., 1997, vol. 97, nos. 1–2, pp. 147–152. Pérez, G., Saiz, J., Ibañez, R., Urtiaga, A.M., et al., Water Res., 2012, vol. 46, pp. 2579–2590. Liu, B., Guo, W.Q., and Ren, N.Q., Adv. Mater. Res., 2013, vol. 788, pp. 405–408. Rajkumar, D., Song, B.J., and Kim, J.G., Dyes Pigm., 2007, vol. 72, pp. 1–7. Pelegrini, R.T., Freire, R.S., Duran, A.N., and Bertazzoli, R., Environ. Sci. Technol., 2001, vol. 35, p. 2849. Panakoulias, T., Kalatzis, P., Kalderis, D., and Katsaounis, A., J. Appl. Electrochem., 2010, vol. 40, pp. 1759–1765. Turro, E., Giannis, A., Cossu, R., Gidarakos, E., et al., J. Hazard. Mater., 2012, vols. 207–208, pp. 73–78. Chen, J., Shi, H., and Lu, J., J. Appl. Electrochem., 2007, vol. 37, pp. 1137–1144. Nan, L.I., Dong, S.S., Wangyang, L.V., Huang, S.Q., et al., Sci. China Chem., 2013, vol. 56, pp. 1757–1764. Yang, W.S., Hui-Feng, B.I., and Zhou, Y.W., J. Chem. Eng. Chin. Univ., 2008, vol. 22, pp. 157–161. Fan, L., Zhou, Y., Yang, W., Chen, G., et al., J. Hazard. Mater., 2006, vol. 137, pp. 1182–1188. Yi, F. and Chen, S., J. Porous Mater., 2008, vol. 15, pp. 565–569. Tran, N., Drogui, P., Doan, T.L., et al., Environ. Technol., 2017, vol. 38, pp. 2939–2948. Comninellis, C. and Nerini, A., J. Appl. Electrochem., 1995, vol. 25, pp. 23–28. Xiao, Y., Liu, Y., Tang, Z., Wu, L., et al., RSC Adv., 2016, vol. 6, pp. 51096–51105. Zhi, D., Qin, J., Zhou, H., Wang, J., et al., J. Appl. Electrochem., 2017, vol. 47, pp. 1–10. Zhang, L. and Zhao, L., Energies, 2013, 6, pp. 934–952. Kim, K.W., Kim, Y.J., Kim, I.T., Park, G.I., et al., Water Res., 2006, vol. 40, pp. 1431–1441. Gomathi, E., Balraj, B., and Kumaraguru, K., Agric. Chem. Biotechnol., 2018, vol. 61, no. 3, pp. 289–293. https://doi.org/10.1007/s13765-018-0357-5 Li, D., Chin. J. Environ. Eng., 2012, vol. 61, no. 3, pp. 289–293. Lin, S.H. and Wu, C.L., Water Res., 1996, vol. 30, pp. 715–721. Li, L. and Liu, Y., J. Hazard. Mater., 2009, vol. 161, pp. 1010–1016. Wang, F., Cheng, Y., Hou, G., et al., Chin. J. Environ. Eng., 2018, vol. 11, pp. 162–170. Jafvert, C.T. and Valentine, R.L., Environ. Sci. Technol., 1992, vol. 26, pp. 577–586.