Electrochemical CO2 reduction versus CO reduction over Au/Ti electrocatalyts in phosphate buffer condition

Chemical Engineering Journal - Tập 470 - Trang 143970 - 2023
Ju Young Maeng1, Seon Young Hwang1, Young Jun Kim1, Choong Kyun Rhee1, Youngku Sohn1
1Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea

Tài liệu tham khảo

Ye, 2021, A review on electrochemical synthesized copper-based catalysts for electrochemical reduction of CO2 to C2+ products, Chem. Eng. J., 414, 10.1016/j.cej.2021.128825 Kamkeng, 2021, Transformation technologies for CO2 utilisation: current status, challenges and future prospects, Chem. Eng. J., 409, 10.1016/j.cej.2020.128138 Kumar, 2021, Artificial leaf for light-driven CO2 reduction: basic concepts, advanced structures and selective solar-to-chemical products, Chem. Eng. J., 430 Ješić, 2021, Engineering photocatalytic and photoelectrocatalytic CO2 reduction reactions : mechanisms, intrinsic kinetics, mass transfer resistances, reactors and multi-scale modelling simulations, Chem. Eng. J., 407, 10.1016/j.cej.2020.126799 Mohanty, 2022, Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrochemical CO2 reduction, J. Energy Chem., 70, 444, 10.1016/j.jechem.2022.02.045 Ahmad, 2022, Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts : a review, Nano Res. Energy, 1, 10.26599/NRE.2022.9120021 Tang, 2020, From electricity to fuels: descriptors for C1 selectivity in electrochemical CO2 reduction, Appl. Catal. B Environ., 279, 10.1016/j.apcatb.2020.119384 Chen, 2021, Recent progress and perspective of electrochemical CO2 reduction towards C2–C5 products over non-precious metal heterogeneous electrocatalysts, Nano Res., 14, 3188, 10.1007/s12274-021-3335-x Yuan, 2021, Coupling strategy for CO2 valorization integrated with organic synthesis by heterogeneous photocatalysis, Angew. Chem. Int. Ed., 60, 21150, 10.1002/anie.202101667 Chen, 2022, Multi-metallic catalysts for the electroreduction of carbon dioxide: recent advances and perspectives, Renew. Sust. Energ. Rev., 155, 10.1016/j.rser.2021.111922 Zhu, 2023, A high-entropy atomic environment converts inactive to active sites for electrocatalysis, Energy Environ. Sci., 16, 619, 10.1039/D2EE03185J Hao, 2023, Competitive trapping of single atoms onto a metal carbide surface, ACS Nano., 17, 6955, 10.1021/acsnano.3c00866 Hao, 2023, Interatomic electron transfer promotes electroreduction CO2-to-CO efficiency over a CuZn diatomic site, Nano Res., 10.1007/s12274-023-5577-2 Hao, 2022, Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction, ACS Nano., 16, 3251, 10.1021/acsnano.1c11145 Zhang, 2023, Solid-phase synthesis of ultra-small CuMo solid solution alloy for efficient electroreduction CO2-to-C2+ production, Chem. Commun., 59, 5221, 10.1039/D3CC00510K Sohn, 2017, Recent progress and perspectives in the photocatalytic CO2 reduction of Ti-oxide-based nanomaterials, Appl. Surf. Sci., 396, 1696, 10.1016/j.apsusc.2016.11.240 Li, 2022, Suppressing byproduct formation for high selective CO2 reduction over optimized Ni/TiO2 based catalysts, J. Energy Chem., 72, 465, 10.1016/j.jechem.2022.04.024 Tang, 2022, An overview of solar-driven photoelectrochemical CO2 conversion to chemical fuels, ACS Catal., 12, 9023, 10.1021/acscatal.2c01667 Dong, 2022, Visible-light deposition of CrOx cocatalyst on TiO2: Cr valence regulation for superior photocatalytic CO2 reduction to CH4, J. Energy Chem., 64, 103, 10.1016/j.jechem.2021.04.028 Hu, 2019, Synthesis, structures and applications of single component core-shell structured TiO2: a review, Chem. Eng. J., 375, 10.1016/j.cej.2019.122029 Liu, 2018, A review of metal- and metal-oxide-based heterogeneous catalysts for electroreduction of carbon dioxide, Adv. Sustain. Syst., 2, 1800028, 10.1002/adsu.201800028 Katal, 2020, A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis, Chem. Eng. J., 384, 10.1016/j.cej.2019.123384 Lin, 2021, Direct Z-scheme WO3-nanowire-bridged TiO2 nanorod arrays for highly efficient photoelectrochemical overall water splitting, J. Energy Chem., 59, 721, 10.1016/j.jechem.2020.12.010 Fujishima, 2000, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev., 1, 1, 10.1016/S1389-5567(00)00002-2 Wang, 2022, Construction of TiO2-covalent organic framework Z-Scheme hybrid through coordination bond for photocatalytic CO2 conversion, J. Energy Chem., 64, 85, 10.1016/j.jechem.2021.04.053 Sankar, 2020, Role of the support in gold nanoparticles as heterogeneous catalysts, Chem. Rev., 120, 3890, 10.1021/acs.chemrev.9b00662 Hendrich, 2021, Homogeneous and heterogeneous gold catalysis for materials science, Chem. Rev., 121, 9113, 10.1021/acs.chemrev.0c00824 Alshammari, 2019, Heterogeneous gold catalysis: from discovery to applications, Catalysts, 9, 402, 10.3390/catal9050402 Ishida, 2020, Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes, Chem. Rev., 120, 464, 10.1021/acs.chemrev.9b00551 Falahati, 2020, Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine, Biochim. Biophys. Acta, 1864 Zhang, 2021, Structure–sensitivity of Au-TiO2 strong metal–support interaction, Angew. Chem., Int. Ed., 60, 12074, 10.1002/anie.202101928 Li, 2019, Morphology-dependent evolutions of sizes, structures, and catalytic activity of Au nanoparticles on anatase TiO2 nanocrystals, J. Phys. Chem. C, 123, 10367, 10.1021/acs.jpcc.9b00262 Yuan, 2021, In situ manipulation of the active Au-TiO2 interface with atomic precision during CO Oxidation, Science, 371, 517, 10.1126/science.abe3558 Wang, 2016, CO oxidation on Au/TiO2: condition-dependent active sites and mechanistic pathways, J. Am. Chem. Soc., 138, 10467, 10.1021/jacs.6b04187 Kyriakou, 2017, Highly active and stable TiO2-supported Au nanoparticles for CO2 reduction, Catal. Commun., 98, 52, 10.1016/j.catcom.2017.05.003 Khan, 2014, Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: an electron relay effect, J. Ind. Eng. Chem., 20, 1584, 10.1016/j.jiec.2013.08.002 Roy, 2017, Citrate-capped hybrid Au-TiO2 nanomaterial for facile and enhanced electrochemical hydrazine oxidation, ACS Omega, 2, 1215, 10.1021/acsomega.6b00566 Pougin, 2018, Au@TiO2 Core–shell composites for the photocatalytic reduction of CO2, Chem. Eur. J., 24, 12416, 10.1002/chem.201801796 Wang, 2019, Enhancement in photocatalytic activity of CO2 reduction to CH4 by 0D/2D Au/TiO2 plasmon heterojunction, Appl. Surf. Sci., 493, 1142, 10.1016/j.apsusc.2019.07.121 Wang, 2021, Nano-Au-modified TiO2 grown on dendritic porous silica particles for enhanced CO2 photoreduction, Microporous Mesoporous Mater., 310, 10.1016/j.micromeso.2020.110635 Mei, 2013, Influence of photodeposited gold nanoparticles on the photocatalytic activity of titanate species in the reduction of CO2 to hydrocarbons, J. Catal., 306, 184, 10.1016/j.jcat.2013.06.027 Molina, 2021, Low temperature sunlight-powered reduction of CO2 to CO using a plasmonic Au/TiO2 nanocatalyst, ChemCatChem, 13, 4507, 10.1002/cctc.202100699 Hossain, 2022, Electrochemical reduction of carbon dioxide at TiO2/Au nanocomposites, ACS Appl. Mater. Interfaces, 14, 51889, 10.1021/acsami.2c14368 Li, 2019, Photoelectrochemical CO2 reduction to adjustable syngas on grain-boundary-mediated a-Si/TiO2/Au photocathodes with low onset potentials, Energy Environ. Sci., 12, 923, 10.1039/C8EE02768D Liu, 2021, Manipulating intermediates at the Au−TiO2 interface over InP nanopillar array for photoelectrochemical CO2 reduction, ACS Catal., 11, 11416, 10.1021/acscatal.1c02043 Zhou, 2022, Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts, Nat. Catal., 5, 545, 10.1038/s41929-022-00803-5 Roy, 2010, Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons, ACS Nano, 1259, 10.1021/nn9015423 Shibata, 2008, Enabling electrocatalytic Fischer-Tropsch synthesis from carbon dioxide over copper-based electrodes, Catal. Lett., 123, 186, 10.1007/s10562-008-9488-3 Kortlever, 2016, Palladium–gold catalyst for the electrochemical reduction of CO2 to C1–C5 hydrocarbons, Chem. Commun., 52, 10229, 10.1039/C6CC03717H Khodakov, 2007, Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels, Chem. Rev., 107, 1692, 10.1021/cr050972v Teimouri, 2021, Kinetics and selectivity study of Fischer-Tropsch synthesis to C5+ hydrocarbons: a review, Catalysts, 11, 330, 10.3390/catal11030330 Rommens, 2023, Molecular views on fischer-tropsch synthesis, Chem. Rev., 10.1021/acs.chemrev.2c00508 Todic, 2014, CO-insertion mechanism based kinetic model of the Fischer-Tropsch synthesis reaction over Re-promoted Co catalyst, Catal. Today, 228, 32, 10.1016/j.cattod.2013.08.008 James, 2012, Reflections on the chemistry of the Fischer-Tropsch synthesis, RSC Adv., 2, 7347, 10.1039/c2ra20519j Tavakoli, 2008, Application of Anderson–Schulz–Flory (ASF) equation in the product distribution of slurry phase ft synthesis with nanosized iron catalysts, Chem. Eng. J., 136, 358, 10.1016/j.cej.2007.04.017 Jouny, 2019, Carbon monoxide electroreduction as an emerging platform for carbon utilization, Nat. Catal., 2, 1062, 10.1038/s41929-019-0388-2 Liu, 2022, Directing the architecture of surface-clean Cu2O for CO electroreduction, J. Am. Chem. Soc., 144, 12410, 10.1021/jacs.2c04260 Li, 2019, Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction, Nat. Catal., 2, 1124, 10.1038/s41929-019-0380-x Yang, 2020, Importance of Au nanostructures in CO2 electrochemical reduction reaction, Sci. Bull., 65, 796, 10.1016/j.scib.2020.01.015 Chen, 2019, Electrochemical reduction of carbon dioxide on Au nanoparticles: an in situ FTIR study, J. Phys. Chem. C, 123, 23898, 10.1021/acs.jpcc.9b04080 Hossain, 2018, Enhanced catalytic activity of nanoporous Au for the efficient electrochemical reduction of carbon dioxide, Appl. Catal. B, 236, 483, 10.1016/j.apcatb.2018.05.053 Kas, 2020, Electrochemical CO2 reduction on nanostructured metal electrodes : factor defect?, Chem. Sci., 11, 1738, 10.1039/C9SC05375A Marcandalli, 2021, Electrolyte effects on the Faradaic efficiency of CO2 reduction to CO on a gold electrode, ACS Catal., 11, 4936, 10.1021/acscatal.1c00272 Kim, 2016, Tuned chemical bonding ability of Au at grain boundaries for enhanced electrochemical CO2 reduction, ACS Catal., 6, 4443, 10.1021/acscatal.6b00412 Khan, 2002, Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 297, 2243, 10.1126/science.1075035 Arifin, 2021, Improvement of TiO2 nanotubes for photoelectrochemical water splitting, Int. J. Hydrog. Energy, 46, 4998, 10.1016/j.ijhydene.2020.11.063 Chusuei, 2001, Modeling heterogeneous catalysts: metal clusters on planar oxide supports, Top. Catal., 14, 1 Calisir, 2020, Nitrogen-doped TiO2 fibers for visible-light-induced photocatalytic activities, Ceram. Int., 46, 16743, 10.1016/j.ceramint.2020.03.250 Roy, 2014, Engineered electronic states of transition metal doped TiO2 nanocrystals for low overpotential oxygen evolution reaction, J. Phys. Chem. C, 118, 29499, 10.1021/jp508445t Katona, 2005, Experimental evidence for a nonparabolic nanoscale interface shift during the dissolution of Ni into bulk Au(111), Phys. Rev. B, 71, 10.1103/PhysRevB.71.115432 Powell, 2010 Cumpson, 2000, The thickogram: a method for easy film thickness measurement in XPS, Surf. Interface Anal., 29, 403, 10.1002/1096-9918(200006)29:6<403::AID-SIA884>3.0.CO;2-8 http://www.xpsfitting.com/2009/04/relative-sensitivity-factors-rsf.html54. Borisyuk, 2012, Blue and red shifts of interband transition energy in supported Au nanoclusters on SiO2 and HOPG investigated by reflection electron energy-loss spectroscopy, J. Nanosci. Nanotechnol., 12, 8751, 10.1166/jnn.2012.6824 Connor, 2020, The determination of electrochemical active surface area and specific capacity revisited for the system MnOx as an oxygen evolution catalyst, Z. Phys. Chem., 234, 979, 10.1515/zpch-2019-1514 Wei, 2019, Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity, Chem. Soc. Rev., 48, 2518, 10.1039/C8CS00848E Maeng, 2023, Electrocatalytic syngas and photocatalytic long-chain hydrocarbon productions by CO2 reduction over ZnO and Zn-based electrodes, Appl. Surf. Sci., 609 Jang, 2022, Electrocatalytic CO2 reduction reaction over group 15 bismuth and antimony film electrodes: What makes difference?, J. CO2 Util., 64, 10.1016/j.jcou.2022.102202 Hwang, 2023, Eu (III)–BaTiO3 nanoparticles and BaTiO3/TiO2/Ti sheets; photocatalytic and electrocatalytic CO2 reduction, Mater. Sci. Semicond. Process., 153, 10.1016/j.mssp.2022.107134 Abild-Pedersen, 2007, CO adsorption energies on metals with correction for high coordination adsorption sites – a density functional study, Surf. Sci., 601, 1747, 10.1016/j.susc.2007.01.052 Ripatti, 2019, Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion, Joule, 3, 240, 10.1016/j.joule.2018.10.007 dos Reis, 2023, Revisiting electrocatalytic CO2 reduction in nonaqueous media: promoting CO2 recycling in organic molecules by controlling H2 evolution, Energy Technol., 10.1002/ente.202201367 Kortlever, 2015, Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst, Catal. Today, 244, 58, 10.1016/j.cattod.2014.08.001