Electrochemical CO2 reduction versus CO reduction over Au/Ti electrocatalyts in phosphate buffer condition
Tài liệu tham khảo
Ye, 2021, A review on electrochemical synthesized copper-based catalysts for electrochemical reduction of CO2 to C2+ products, Chem. Eng. J., 414, 10.1016/j.cej.2021.128825
Kamkeng, 2021, Transformation technologies for CO2 utilisation: current status, challenges and future prospects, Chem. Eng. J., 409, 10.1016/j.cej.2020.128138
Kumar, 2021, Artificial leaf for light-driven CO2 reduction: basic concepts, advanced structures and selective solar-to-chemical products, Chem. Eng. J., 430
Ješić, 2021, Engineering photocatalytic and photoelectrocatalytic CO2 reduction reactions : mechanisms, intrinsic kinetics, mass transfer resistances, reactors and multi-scale modelling simulations, Chem. Eng. J., 407, 10.1016/j.cej.2020.126799
Mohanty, 2022, Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrochemical CO2 reduction, J. Energy Chem., 70, 444, 10.1016/j.jechem.2022.02.045
Ahmad, 2022, Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts : a review, Nano Res. Energy, 1, 10.26599/NRE.2022.9120021
Tang, 2020, From electricity to fuels: descriptors for C1 selectivity in electrochemical CO2 reduction, Appl. Catal. B Environ., 279, 10.1016/j.apcatb.2020.119384
Chen, 2021, Recent progress and perspective of electrochemical CO2 reduction towards C2–C5 products over non-precious metal heterogeneous electrocatalysts, Nano Res., 14, 3188, 10.1007/s12274-021-3335-x
Yuan, 2021, Coupling strategy for CO2 valorization integrated with organic synthesis by heterogeneous photocatalysis, Angew. Chem. Int. Ed., 60, 21150, 10.1002/anie.202101667
Chen, 2022, Multi-metallic catalysts for the electroreduction of carbon dioxide: recent advances and perspectives, Renew. Sust. Energ. Rev., 155, 10.1016/j.rser.2021.111922
Zhu, 2023, A high-entropy atomic environment converts inactive to active sites for electrocatalysis, Energy Environ. Sci., 16, 619, 10.1039/D2EE03185J
Hao, 2023, Competitive trapping of single atoms onto a metal carbide surface, ACS Nano., 17, 6955, 10.1021/acsnano.3c00866
Hao, 2023, Interatomic electron transfer promotes electroreduction CO2-to-CO efficiency over a CuZn diatomic site, Nano Res., 10.1007/s12274-023-5577-2
Hao, 2022, Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction, ACS Nano., 16, 3251, 10.1021/acsnano.1c11145
Zhang, 2023, Solid-phase synthesis of ultra-small CuMo solid solution alloy for efficient electroreduction CO2-to-C2+ production, Chem. Commun., 59, 5221, 10.1039/D3CC00510K
Sohn, 2017, Recent progress and perspectives in the photocatalytic CO2 reduction of Ti-oxide-based nanomaterials, Appl. Surf. Sci., 396, 1696, 10.1016/j.apsusc.2016.11.240
Li, 2022, Suppressing byproduct formation for high selective CO2 reduction over optimized Ni/TiO2 based catalysts, J. Energy Chem., 72, 465, 10.1016/j.jechem.2022.04.024
Tang, 2022, An overview of solar-driven photoelectrochemical CO2 conversion to chemical fuels, ACS Catal., 12, 9023, 10.1021/acscatal.2c01667
Dong, 2022, Visible-light deposition of CrOx cocatalyst on TiO2: Cr valence regulation for superior photocatalytic CO2 reduction to CH4, J. Energy Chem., 64, 103, 10.1016/j.jechem.2021.04.028
Hu, 2019, Synthesis, structures and applications of single component core-shell structured TiO2: a review, Chem. Eng. J., 375, 10.1016/j.cej.2019.122029
Liu, 2018, A review of metal- and metal-oxide-based heterogeneous catalysts for electroreduction of carbon dioxide, Adv. Sustain. Syst., 2, 1800028, 10.1002/adsu.201800028
Katal, 2020, A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis, Chem. Eng. J., 384, 10.1016/j.cej.2019.123384
Lin, 2021, Direct Z-scheme WO3-nanowire-bridged TiO2 nanorod arrays for highly efficient photoelectrochemical overall water splitting, J. Energy Chem., 59, 721, 10.1016/j.jechem.2020.12.010
Fujishima, 2000, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev., 1, 1, 10.1016/S1389-5567(00)00002-2
Wang, 2022, Construction of TiO2-covalent organic framework Z-Scheme hybrid through coordination bond for photocatalytic CO2 conversion, J. Energy Chem., 64, 85, 10.1016/j.jechem.2021.04.053
Sankar, 2020, Role of the support in gold nanoparticles as heterogeneous catalysts, Chem. Rev., 120, 3890, 10.1021/acs.chemrev.9b00662
Hendrich, 2021, Homogeneous and heterogeneous gold catalysis for materials science, Chem. Rev., 121, 9113, 10.1021/acs.chemrev.0c00824
Alshammari, 2019, Heterogeneous gold catalysis: from discovery to applications, Catalysts, 9, 402, 10.3390/catal9050402
Ishida, 2020, Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes, Chem. Rev., 120, 464, 10.1021/acs.chemrev.9b00551
Falahati, 2020, Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine, Biochim. Biophys. Acta, 1864
Zhang, 2021, Structure–sensitivity of Au-TiO2 strong metal–support interaction, Angew. Chem., Int. Ed., 60, 12074, 10.1002/anie.202101928
Li, 2019, Morphology-dependent evolutions of sizes, structures, and catalytic activity of Au nanoparticles on anatase TiO2 nanocrystals, J. Phys. Chem. C, 123, 10367, 10.1021/acs.jpcc.9b00262
Yuan, 2021, In situ manipulation of the active Au-TiO2 interface with atomic precision during CO Oxidation, Science, 371, 517, 10.1126/science.abe3558
Wang, 2016, CO oxidation on Au/TiO2: condition-dependent active sites and mechanistic pathways, J. Am. Chem. Soc., 138, 10467, 10.1021/jacs.6b04187
Kyriakou, 2017, Highly active and stable TiO2-supported Au nanoparticles for CO2 reduction, Catal. Commun., 98, 52, 10.1016/j.catcom.2017.05.003
Khan, 2014, Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: an electron relay effect, J. Ind. Eng. Chem., 20, 1584, 10.1016/j.jiec.2013.08.002
Roy, 2017, Citrate-capped hybrid Au-TiO2 nanomaterial for facile and enhanced electrochemical hydrazine oxidation, ACS Omega, 2, 1215, 10.1021/acsomega.6b00566
Pougin, 2018, Au@TiO2 Core–shell composites for the photocatalytic reduction of CO2, Chem. Eur. J., 24, 12416, 10.1002/chem.201801796
Wang, 2019, Enhancement in photocatalytic activity of CO2 reduction to CH4 by 0D/2D Au/TiO2 plasmon heterojunction, Appl. Surf. Sci., 493, 1142, 10.1016/j.apsusc.2019.07.121
Wang, 2021, Nano-Au-modified TiO2 grown on dendritic porous silica particles for enhanced CO2 photoreduction, Microporous Mesoporous Mater., 310, 10.1016/j.micromeso.2020.110635
Mei, 2013, Influence of photodeposited gold nanoparticles on the photocatalytic activity of titanate species in the reduction of CO2 to hydrocarbons, J. Catal., 306, 184, 10.1016/j.jcat.2013.06.027
Molina, 2021, Low temperature sunlight-powered reduction of CO2 to CO using a plasmonic Au/TiO2 nanocatalyst, ChemCatChem, 13, 4507, 10.1002/cctc.202100699
Hossain, 2022, Electrochemical reduction of carbon dioxide at TiO2/Au nanocomposites, ACS Appl. Mater. Interfaces, 14, 51889, 10.1021/acsami.2c14368
Li, 2019, Photoelectrochemical CO2 reduction to adjustable syngas on grain-boundary-mediated a-Si/TiO2/Au photocathodes with low onset potentials, Energy Environ. Sci., 12, 923, 10.1039/C8EE02768D
Liu, 2021, Manipulating intermediates at the Au−TiO2 interface over InP nanopillar array for photoelectrochemical CO2 reduction, ACS Catal., 11, 11416, 10.1021/acscatal.1c02043
Zhou, 2022, Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts, Nat. Catal., 5, 545, 10.1038/s41929-022-00803-5
Roy, 2010, Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons, ACS Nano, 1259, 10.1021/nn9015423
Shibata, 2008, Enabling electrocatalytic Fischer-Tropsch synthesis from carbon dioxide over copper-based electrodes, Catal. Lett., 123, 186, 10.1007/s10562-008-9488-3
Kortlever, 2016, Palladium–gold catalyst for the electrochemical reduction of CO2 to C1–C5 hydrocarbons, Chem. Commun., 52, 10229, 10.1039/C6CC03717H
Khodakov, 2007, Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels, Chem. Rev., 107, 1692, 10.1021/cr050972v
Teimouri, 2021, Kinetics and selectivity study of Fischer-Tropsch synthesis to C5+ hydrocarbons: a review, Catalysts, 11, 330, 10.3390/catal11030330
Rommens, 2023, Molecular views on fischer-tropsch synthesis, Chem. Rev., 10.1021/acs.chemrev.2c00508
Todic, 2014, CO-insertion mechanism based kinetic model of the Fischer-Tropsch synthesis reaction over Re-promoted Co catalyst, Catal. Today, 228, 32, 10.1016/j.cattod.2013.08.008
James, 2012, Reflections on the chemistry of the Fischer-Tropsch synthesis, RSC Adv., 2, 7347, 10.1039/c2ra20519j
Tavakoli, 2008, Application of Anderson–Schulz–Flory (ASF) equation in the product distribution of slurry phase ft synthesis with nanosized iron catalysts, Chem. Eng. J., 136, 358, 10.1016/j.cej.2007.04.017
Jouny, 2019, Carbon monoxide electroreduction as an emerging platform for carbon utilization, Nat. Catal., 2, 1062, 10.1038/s41929-019-0388-2
Liu, 2022, Directing the architecture of surface-clean Cu2O for CO electroreduction, J. Am. Chem. Soc., 144, 12410, 10.1021/jacs.2c04260
Li, 2019, Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction, Nat. Catal., 2, 1124, 10.1038/s41929-019-0380-x
Yang, 2020, Importance of Au nanostructures in CO2 electrochemical reduction reaction, Sci. Bull., 65, 796, 10.1016/j.scib.2020.01.015
Chen, 2019, Electrochemical reduction of carbon dioxide on Au nanoparticles: an in situ FTIR study, J. Phys. Chem. C, 123, 23898, 10.1021/acs.jpcc.9b04080
Hossain, 2018, Enhanced catalytic activity of nanoporous Au for the efficient electrochemical reduction of carbon dioxide, Appl. Catal. B, 236, 483, 10.1016/j.apcatb.2018.05.053
Kas, 2020, Electrochemical CO2 reduction on nanostructured metal electrodes : factor defect?, Chem. Sci., 11, 1738, 10.1039/C9SC05375A
Marcandalli, 2021, Electrolyte effects on the Faradaic efficiency of CO2 reduction to CO on a gold electrode, ACS Catal., 11, 4936, 10.1021/acscatal.1c00272
Kim, 2016, Tuned chemical bonding ability of Au at grain boundaries for enhanced electrochemical CO2 reduction, ACS Catal., 6, 4443, 10.1021/acscatal.6b00412
Khan, 2002, Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 297, 2243, 10.1126/science.1075035
Arifin, 2021, Improvement of TiO2 nanotubes for photoelectrochemical water splitting, Int. J. Hydrog. Energy, 46, 4998, 10.1016/j.ijhydene.2020.11.063
Chusuei, 2001, Modeling heterogeneous catalysts: metal clusters on planar oxide supports, Top. Catal., 14, 1
Calisir, 2020, Nitrogen-doped TiO2 fibers for visible-light-induced photocatalytic activities, Ceram. Int., 46, 16743, 10.1016/j.ceramint.2020.03.250
Roy, 2014, Engineered electronic states of transition metal doped TiO2 nanocrystals for low overpotential oxygen evolution reaction, J. Phys. Chem. C, 118, 29499, 10.1021/jp508445t
Katona, 2005, Experimental evidence for a nonparabolic nanoscale interface shift during the dissolution of Ni into bulk Au(111), Phys. Rev. B, 71, 10.1103/PhysRevB.71.115432
Powell, 2010
Cumpson, 2000, The thickogram: a method for easy film thickness measurement in XPS, Surf. Interface Anal., 29, 403, 10.1002/1096-9918(200006)29:6<403::AID-SIA884>3.0.CO;2-8
http://www.xpsfitting.com/2009/04/relative-sensitivity-factors-rsf.html54.
Borisyuk, 2012, Blue and red shifts of interband transition energy in supported Au nanoclusters on SiO2 and HOPG investigated by reflection electron energy-loss spectroscopy, J. Nanosci. Nanotechnol., 12, 8751, 10.1166/jnn.2012.6824
Connor, 2020, The determination of electrochemical active surface area and specific capacity revisited for the system MnOx as an oxygen evolution catalyst, Z. Phys. Chem., 234, 979, 10.1515/zpch-2019-1514
Wei, 2019, Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity, Chem. Soc. Rev., 48, 2518, 10.1039/C8CS00848E
Maeng, 2023, Electrocatalytic syngas and photocatalytic long-chain hydrocarbon productions by CO2 reduction over ZnO and Zn-based electrodes, Appl. Surf. Sci., 609
Jang, 2022, Electrocatalytic CO2 reduction reaction over group 15 bismuth and antimony film electrodes: What makes difference?, J. CO2 Util., 64, 10.1016/j.jcou.2022.102202
Hwang, 2023, Eu (III)–BaTiO3 nanoparticles and BaTiO3/TiO2/Ti sheets; photocatalytic and electrocatalytic CO2 reduction, Mater. Sci. Semicond. Process., 153, 10.1016/j.mssp.2022.107134
Abild-Pedersen, 2007, CO adsorption energies on metals with correction for high coordination adsorption sites – a density functional study, Surf. Sci., 601, 1747, 10.1016/j.susc.2007.01.052
Ripatti, 2019, Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion, Joule, 3, 240, 10.1016/j.joule.2018.10.007
dos Reis, 2023, Revisiting electrocatalytic CO2 reduction in nonaqueous media: promoting CO2 recycling in organic molecules by controlling H2 evolution, Energy Technol., 10.1002/ente.202201367
Kortlever, 2015, Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst, Catal. Today, 244, 58, 10.1016/j.cattod.2014.08.001