Hoạt động điện xúc tác giảm oxy của các vật liệu composite dựa trên sợi carbon ba chiều cho pin hòa tan oxy trong nước biển

Carbon Letters - Tập 32 - Trang 537-546 - 2021
Juxin Yu1,2, Li Ma1, Tigang Duan1, Yonglei Xin1, Yanzhuo Lv2, Haibing Zhang1
1State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao, China
2College of Material Science and Chemical Engineering, Harbin Engineering University, HarbinHeilongjiang, China

Tóm tắt

Phương pháp giảm thủy nhiệt một bước đã được sử dụng để chuẩn bị các composite graphene-bạc (CFB/Pt–G) dựa trên bàn chải sợi carbon ba chiều nhằm cải thiện hoạt động điện xúc tác giảm oxy của các vật liệu catốt cho pin hòa tan oxy trong nước biển. Kết quả đặc trưng cho thấy graphene oxit giảm của composite graphene-bạc chuẩn bị cho thấy cấu trúc kiểu gấp ít lớp. Ngoài ra, các hạt nano Pt với cấu trúc đa tinh thể có sự phát triển ưu tiên theo mặt tinh thể (111) và chủ yếu phân bổ xung quanh các khoang khuyết tật của graphene gấp. Kết quả điện hóa cho thấy mật độ dòng giới hạn khuếch tán của composite CFB/Pt–G được thử nghiệm ở 1600 rpm/phút trong dung dịch NaCl 3.5% đạt 5 mA/cm2, trong khi đó composite CFB/G chỉ đạt 2.64 mA/cm2. Kết quả xả pin cho thấy mật độ công suất thể tích tối đa của pin CFB/Pt–G–Mg với điện áp hở ổn định 1.73 V cao gấp 81 lần so với pin nước biển thương mại SWB1200.

Từ khóa

#hiệu suất pin #nước biển #xúc tác điện hóa #graphene #sợi carbon

Tài liệu tham khảo

Chen GQ, Wu XF (2017) Energy overview for globalized world economy: source, supply chain and sink. Renewable Sustaining Energy Rev 69:735–749 Chin CS, Jia J, Chiew JHK, Toh WD, Gao Z, Zhang C, Cann JM (2019) System design of underwater battery power system for marine and offshore industry. J Energy Storage 21:724–740 Song Q, Lu K, Zhao M (2020) Feasibility analysis of underwater application of aluminum-air(oxygen) and aluminum-water cell. Marine Electric 40(8):25–28 Ren L, Sang L, Zhao Q, Ding F, Liu X (2017) Application status and development trend of power battery for AUV. Chin J Power Sources 41(6):952–955 Wang Y, Huang W, Li X (2011) Research progress on underwater power sources. Chin J Power Sources 35(7):858–861 Sun L, Cao D, Wang G, Zhang M (2008) Metal semi-fuel cells for underwater power source. Chin J Power Sources 32(5):339–342 Shinohara M, Araki E, Mochizuki M, Kanazawa T, Suyehiro K (2009) Practical application of a sea-water battery in deep-sea basin and its performance. J Power Sources 187(1):253–260 Hahn R, Mainert J, Glaw F, Lang KD (2015) Sea water magnesium fuel cell power supply. J Power Sources 288:26–35 Yu Q, Lin H (2017) Application status and prospects of aluminum air battery in military field. Ordnance Material Sci Eng 4:132–135 Hasvold Ø, Størkersen NJ, Forseth S, Lian T (2006) Power sources for autonomous underwater vehicles. J Power Sources 162:935–942 Wang L, Wang W, Yang G, Liu D, Xuan J, Wang H, Leung MKH, Liu F (2013) A hybrid aluminum/hydrogen/air cell system. Int J Hydrogen Energy 38:14801–14809 Xu Y, Wang Y, Yuan L, Ding W, Deng W (2020) Preparation and performance of sulfuric/sulfosalicylic acid doped conductive polyaniline for cathode material. Chinese J Power Sources 44(1):80–83 Deng S, Yuan L, Xu Y, Yang Y, Wu Y (2019) Preparation and performance of sulfuric/sulfosalicylic acid doped conductive polyaniline cathode materials for seawater battery. Polymer Materials Sci Eng 35(7):141–146 Xu H, Lu Y, Zhang W, Yu Y, Yan C, Sun Y, Zhong L, Liu J, Zheng Y, Han B, Wang Y (2012) Dissolved oxygen seawater battery with electrochemical capacitance. J Electrochem 18(1):24–30 Hasvold Ø (1990) Seawater batteries for low power, long term applications. Proceedings of the 34th International Power Sources Symposium 4111667. Shen PK, Tseung ACC (1994) Development of an aluminiumhea water battery for subsea applications. J Power Sources 47:119–127 Hasvold Ø, Henriksen H, Melvax E, Citi G, Johansen BØ, Kjønigsen T, Galetti R (1997) Sea-water battery for subsea control systems. J Power Sources 65:253–261 Wilcok WSD, Kauffman PC (1997) Development of a seawater battery for deep-water applications. J Power Sources 66:71–75 Hasvold Ø, Lian T, Haakaas E, Størkersen N, Perelman O, Cordier S (2004) CLIPPER: a long-range, autonomous underwater vehicle using magnesium fuel and oxygen from the sea. J Power Sources 136:232–239 Hasvold Ø, Henriksen H, Syversen B (1995) Improvements in the rate capability of the magnesium-dissolved oxygen seawater cell. J Power Sources 15:149–162 Xu H, Xia G, Liu H, Xia S, Lu Y (2015) Electrochemical activation of commercial polyacrylonitrile-based carbon fiber for the oxygen reduction reaction. Phys Chem Chem Phys 17:7707–7713 Jiao W, Fan Y, Huang C, Sanglin, (2018) Effect of modified polyacrylonitrile-based carbon fiber on the oxygen reduction reactions in seawater batteries. Ionics 24:285–296 Tian G, Sun L, Sun H (2019) Improvement of graphene oxide modified carbon fiber anode on seawater battery voltage. Chinese Journal of Power Sources 43(5):832–835 Shao M, Chang Q, Dodelet JP, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116:3594–3657 Xiong Y, You M, Liu F, Wu M, Cai C, Ding L, Zhou C, Hu M, Deng W, Wang S (2020) Pt-decorated, nanocarbon-intercalated, and N-doped graphene with enhanced activity and stability for oxygen reduction reaction. ACS Appl Energy Materials 3:2490–2495 Higgins D, Zamani P, Yu A, Chen Z (2016) The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy Environ Sci 9:357–390 Yang X, Ma X, Wang K, Wu D, Lei Z, Feng C (2016) Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode. Electrochim Acta 210:846–853 Wang C, Su K, Wan W, Guo H, Zhou H, Chen J, Zhang X, Huang Y (2014) High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium–sulfur batteries. J Materials Chem A 2:5018–5023 Zhang J, Ai Y, Wu J, Zhang D, Wang Y, Feng Z, Sun H, Liang Q, Sun T, Yang Y (2020) Nickel-catalyzed synthesis of 3D edge-curled graphene for high-performance lithium-ion batteries. Adv Func Mater 30:1904645 Guex LG, Sacchi B, Peuvot KF, Andersson RL, Pourrahimi AM, Ström V, Farris S, Olsson RT (2017) Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 9:9562–9571 Mo Z, Zheng R, Peng H, Liang H, Liao S (2014) Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application. J Power Sources 245:801–807 Wu J, Lin M, Cong X, Liu H, Tan P (2018) Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev 47:1822–1873 Byambasuren U, Jeon Y, Altansukh D, Shul Y (2016) Doping effect of boron and phosphorus on nitrogen-based mesoporous carbons as electrocatalysts for oxygen reduction reaction in acid media. J Solid State Electrochem 20:645–655 Zhang C, Wang Y, Song W, Zhang H, Zhang X, Li R, Fan C (2020) Synthesis of MnO2 modified porous carbon spheres by preoxidation-assisted impregnation for catalytic oxidation of indoor formaldehyde. J Porous Mater 27:801–815 Stacy J, Regmi YN, Leonard B, Fan L (2017) The recent progress and future of oxygen reduction reaction catalysis: a review. Renew Sustain Energy Rev 69:401–414 Xu S, Kim Y, Higgins D, Yusuf M, Jaramillo TF, Prinz FB (2017) Building upon the Koutecky-Levich equation for evaluation of next-generation oxygen reduction reaction catalysts. Electrochim Acta 255:99–108 Wu J, Wang Y, Zhang D, Hou B (2011) Studies on the electrochemical reduction of oxygen catalyzed by reduced graphene sheets in neutral media. J Power Sources 196:1141–1144