Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hoạt động điện xúc tác giảm oxy của các vật liệu composite dựa trên sợi carbon ba chiều cho pin hòa tan oxy trong nước biển
Tóm tắt
Phương pháp giảm thủy nhiệt một bước đã được sử dụng để chuẩn bị các composite graphene-bạc (CFB/Pt–G) dựa trên bàn chải sợi carbon ba chiều nhằm cải thiện hoạt động điện xúc tác giảm oxy của các vật liệu catốt cho pin hòa tan oxy trong nước biển. Kết quả đặc trưng cho thấy graphene oxit giảm của composite graphene-bạc chuẩn bị cho thấy cấu trúc kiểu gấp ít lớp. Ngoài ra, các hạt nano Pt với cấu trúc đa tinh thể có sự phát triển ưu tiên theo mặt tinh thể (111) và chủ yếu phân bổ xung quanh các khoang khuyết tật của graphene gấp. Kết quả điện hóa cho thấy mật độ dòng giới hạn khuếch tán của composite CFB/Pt–G được thử nghiệm ở 1600 rpm/phút trong dung dịch NaCl 3.5% đạt 5 mA/cm2, trong khi đó composite CFB/G chỉ đạt 2.64 mA/cm2. Kết quả xả pin cho thấy mật độ công suất thể tích tối đa của pin CFB/Pt–G–Mg với điện áp hở ổn định 1.73 V cao gấp 81 lần so với pin nước biển thương mại SWB1200.
Từ khóa
#hiệu suất pin #nước biển #xúc tác điện hóa #graphene #sợi carbonTài liệu tham khảo
Chen GQ, Wu XF (2017) Energy overview for globalized world economy: source, supply chain and sink. Renewable Sustaining Energy Rev 69:735–749
Chin CS, Jia J, Chiew JHK, Toh WD, Gao Z, Zhang C, Cann JM (2019) System design of underwater battery power system for marine and offshore industry. J Energy Storage 21:724–740
Song Q, Lu K, Zhao M (2020) Feasibility analysis of underwater application of aluminum-air(oxygen) and aluminum-water cell. Marine Electric 40(8):25–28
Ren L, Sang L, Zhao Q, Ding F, Liu X (2017) Application status and development trend of power battery for AUV. Chin J Power Sources 41(6):952–955
Wang Y, Huang W, Li X (2011) Research progress on underwater power sources. Chin J Power Sources 35(7):858–861
Sun L, Cao D, Wang G, Zhang M (2008) Metal semi-fuel cells for underwater power source. Chin J Power Sources 32(5):339–342
Shinohara M, Araki E, Mochizuki M, Kanazawa T, Suyehiro K (2009) Practical application of a sea-water battery in deep-sea basin and its performance. J Power Sources 187(1):253–260
Hahn R, Mainert J, Glaw F, Lang KD (2015) Sea water magnesium fuel cell power supply. J Power Sources 288:26–35
Yu Q, Lin H (2017) Application status and prospects of aluminum air battery in military field. Ordnance Material Sci Eng 4:132–135
Hasvold Ø, Størkersen NJ, Forseth S, Lian T (2006) Power sources for autonomous underwater vehicles. J Power Sources 162:935–942
Wang L, Wang W, Yang G, Liu D, Xuan J, Wang H, Leung MKH, Liu F (2013) A hybrid aluminum/hydrogen/air cell system. Int J Hydrogen Energy 38:14801–14809
Xu Y, Wang Y, Yuan L, Ding W, Deng W (2020) Preparation and performance of sulfuric/sulfosalicylic acid doped conductive polyaniline for cathode material. Chinese J Power Sources 44(1):80–83
Deng S, Yuan L, Xu Y, Yang Y, Wu Y (2019) Preparation and performance of sulfuric/sulfosalicylic acid doped conductive polyaniline cathode materials for seawater battery. Polymer Materials Sci Eng 35(7):141–146
Xu H, Lu Y, Zhang W, Yu Y, Yan C, Sun Y, Zhong L, Liu J, Zheng Y, Han B, Wang Y (2012) Dissolved oxygen seawater battery with electrochemical capacitance. J Electrochem 18(1):24–30
Hasvold Ø (1990) Seawater batteries for low power, long term applications. Proceedings of the 34th International Power Sources Symposium 4111667.
Shen PK, Tseung ACC (1994) Development of an aluminiumhea water battery for subsea applications. J Power Sources 47:119–127
Hasvold Ø, Henriksen H, Melvax E, Citi G, Johansen BØ, Kjønigsen T, Galetti R (1997) Sea-water battery for subsea control systems. J Power Sources 65:253–261
Wilcok WSD, Kauffman PC (1997) Development of a seawater battery for deep-water applications. J Power Sources 66:71–75
Hasvold Ø, Lian T, Haakaas E, Størkersen N, Perelman O, Cordier S (2004) CLIPPER: a long-range, autonomous underwater vehicle using magnesium fuel and oxygen from the sea. J Power Sources 136:232–239
Hasvold Ø, Henriksen H, Syversen B (1995) Improvements in the rate capability of the magnesium-dissolved oxygen seawater cell. J Power Sources 15:149–162
Xu H, Xia G, Liu H, Xia S, Lu Y (2015) Electrochemical activation of commercial polyacrylonitrile-based carbon fiber for the oxygen reduction reaction. Phys Chem Chem Phys 17:7707–7713
Jiao W, Fan Y, Huang C, Sanglin, (2018) Effect of modified polyacrylonitrile-based carbon fiber on the oxygen reduction reactions in seawater batteries. Ionics 24:285–296
Tian G, Sun L, Sun H (2019) Improvement of graphene oxide modified carbon fiber anode on seawater battery voltage. Chinese Journal of Power Sources 43(5):832–835
Shao M, Chang Q, Dodelet JP, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116:3594–3657
Xiong Y, You M, Liu F, Wu M, Cai C, Ding L, Zhou C, Hu M, Deng W, Wang S (2020) Pt-decorated, nanocarbon-intercalated, and N-doped graphene with enhanced activity and stability for oxygen reduction reaction. ACS Appl Energy Materials 3:2490–2495
Higgins D, Zamani P, Yu A, Chen Z (2016) The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy Environ Sci 9:357–390
Yang X, Ma X, Wang K, Wu D, Lei Z, Feng C (2016) Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode. Electrochim Acta 210:846–853
Wang C, Su K, Wan W, Guo H, Zhou H, Chen J, Zhang X, Huang Y (2014) High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium–sulfur batteries. J Materials Chem A 2:5018–5023
Zhang J, Ai Y, Wu J, Zhang D, Wang Y, Feng Z, Sun H, Liang Q, Sun T, Yang Y (2020) Nickel-catalyzed synthesis of 3D edge-curled graphene for high-performance lithium-ion batteries. Adv Func Mater 30:1904645
Guex LG, Sacchi B, Peuvot KF, Andersson RL, Pourrahimi AM, Ström V, Farris S, Olsson RT (2017) Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 9:9562–9571
Mo Z, Zheng R, Peng H, Liang H, Liao S (2014) Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application. J Power Sources 245:801–807
Wu J, Lin M, Cong X, Liu H, Tan P (2018) Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev 47:1822–1873
Byambasuren U, Jeon Y, Altansukh D, Shul Y (2016) Doping effect of boron and phosphorus on nitrogen-based mesoporous carbons as electrocatalysts for oxygen reduction reaction in acid media. J Solid State Electrochem 20:645–655
Zhang C, Wang Y, Song W, Zhang H, Zhang X, Li R, Fan C (2020) Synthesis of MnO2 modified porous carbon spheres by preoxidation-assisted impregnation for catalytic oxidation of indoor formaldehyde. J Porous Mater 27:801–815
Stacy J, Regmi YN, Leonard B, Fan L (2017) The recent progress and future of oxygen reduction reaction catalysis: a review. Renew Sustain Energy Rev 69:401–414
Xu S, Kim Y, Higgins D, Yusuf M, Jaramillo TF, Prinz FB (2017) Building upon the Koutecky-Levich equation for evaluation of next-generation oxygen reduction reaction catalysts. Electrochim Acta 255:99–108
Wu J, Wang Y, Zhang D, Hou B (2011) Studies on the electrochemical reduction of oxygen catalyzed by reduced graphene sheets in neutral media. J Power Sources 196:1141–1144