Electrocatalytic Oxygen Evolution on Glassy Carbon Electrode Modified with Optimized GC/CuxFe3 – xO4 (0 ≤ x ≤ 1.0) Nanocomposite in 1 M KOH Solution

Surface Engineering and Applied Electrochemistry - Tập 59 - Trang 754-763 - 2023
Basant Lal1, Pankaj Chauhan1
1Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, India

Tóm tắt

Copper substituted ferrites (CuxFe3 – xO4; (0 ≤ x ≤ 1.0) were prepared by the egg white auto-combustion method at 550°C and investigated their physicochemical properties via the thermogravimetric analysis, infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and electrochemical ones via cyclic voltammenry and Tafel polarization. The formation of copper ferrites with a spinel phase was confirmed by the Fourier-transform infrared spectra having characteristic vibration peaks and by the X-ray diffraction spectra with reflection planes. The electrochemical performance of the oxygen evolution reaction of copper ferrites on glassy carbon electrodes was investigated in 1 M KOH. No redox couple was observed in cyclic voltammograms of the glassy carbon/oxide electrode in the selected oxygen overpotential regions. The iR-free Tafel polarization curves having higher Tafel slopes (b = 72–125 mV dec–1) and a lower current density (i = 0.29–4.7 mA cm–2 at 0.85 V) exhibited a sluggish nature of the fabricated oxide electrodes from the electrocatalytic point of view. The substitution of Fe by Cu in the oxide lattice considerably increased the electrocatalytic activity for the oxygen evolution reaction. Based on the current density for the oxygen evolution reaction, the 0.75 mol Cu-substituted oxide electrode was found to be the most active electrode among the prepared oxides. The order of the reaction related to the [OH–] concentration was a unity for almost all of the electrodes except when 0.25 mol Cu-substitution followed the second-order kinetics.

Tài liệu tham khảo

Shinde, P., Rout, C.S., Late, D., Tyagi, P.K., et al., Optimized performance of nickel in crystal-layered arrangement of NiFe2O4/rGO hybrid for high-performance oxygen evolution reaction, Int. J. Hydrogen Energy, 2021, vol. 46, no. 2, p. 2617. https://doi.org/10.1016/j.ijhydene.2020.10.144 Soloveichik, G., Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process, Nat. Catal., 2019, vol. 2, p. 377. https://doi.org/10.1038/s41929-019-0280-0 Tatarchuk, T., Danyliuk, N., Shyichuk, A., Kotsyubynsky, V., et al., Green synthesis of cobalt ferrite using grape extract: The impact of cation distribution and inversion degree on the catalytic activity in the decomposition of hydrogen peroxide, Emergent Mater., 2021, vol. 5, p. 89. https://doi.org/10.1007/s42247-021-00323-1 Kumar, Y., Vashishtha, V.K., Singh, P.P., Kumar, A., et al., Praseodymium ferrite nano-particles based modified electrode and its application in the determination of dopamine, Biointerface Res. Appl. Chem., 2020, vol. 10, no. 4, p. 5855. https://doi.org/10.33263/BRIAC104.855859 Bansal, S., Kumar, Y., Das, D.K. and Singh, P.P., Hyperactive magnetically separable nano-sized MgFe2O4 catalyst for the synthesis of several five-and six-membered heterocycles, Chem. Chem. Tech., 2019, vol. 2, no. 13, p. 163. https://doi.org/10.23939/chcht13.02.163 Peng, S., Li, L., Hu, Y., Srinivasan, M., et al., Fabrication of spinel one-dimensional architectures by single spinneret electrospinning for energy storage applications, ACS Nano, 2015, vol. 9, p. 1945. https://doi.org/10.1021/nn506851x Gautam, J., Tran, D.T., Kim, N.H. and Lee, J.H., Mesoporous layered spinel zinc manganese oxide nanocrystals stabilized nitrogen-doped graphene as an effective catalyst for oxygen reduction, J. Colloid Interface Sci., 2019, vol. 545, p. 43. https://doi.org/10.1016/j.jcis.2019.03.015 Yang, Z., Zhu, Y., Chi, M., Wange, C., et al., Fabrication of cobalt ferrite/cobalt sulfide hybrid nanotubes with enhanced peroxidase-like activity for colorimetric detection of dopamine, J. Colloid Interface Sci., 2018, vol. 511, p. 383. https://doi.org/10.1016/j.jcis.2017.09.097 Alshehri, S.M., Alhabarah, A.N., Ahmed, J., Naushad, M., et al., An efficient and cost-effective trifunctional electrocatalyst based on cobalt ferrite embedded nitrogen-doped carbon, J. Colloid Interface Sci., 2018, vol. 514, p. 1. https://doi.org/10.1016/j.jcis.2017.12.020 Hu, X., Zhu, Z., Li, Z., Xie, L., et al., Heterostructure of CuO microspheres modified with CuFe2O4 nanoparticles for highly sensitive H2S gas sensor, Sens. Actuators, 2018, vol. 264, p. 139. https://doi.org/10.1016/j.snb.2018.02.110 Krishnaveni, T., Rajini Kant, B., Raju, V.S.R., and Murthy, S.R., Fabrication of multilayer chip inductors using Ni–Cu–Zn ferrites, J. Alloys Compd., 2005, vol. 414, nos. 1–2, p. 282. https://doi.org/10.1016/j.jallcom.2005.07.029 Faungnawakij, K., Kikuchi, R., Fukunaga, T., and Eguchi, K., Catalytic hydrogen production from dimethyl ether over CuFe2O4 spinel-based composites: Hydrogen reduction and metal dopant effects, Catal. Today, 2008, vol. 138, p. 157. https://doi.org/10.1016/j.cattod.2008.05.004 Dong, Y., Chui, Y.-S., Ma, R., Cao, C., et al., One-pot scalable synthesis of Cu–CuFe2O4/graphene composites as anode materials for lithium-ion batteries with enhanced lithium storage properties, J. Mater. Chem. A, 2014, vol. 2, p. 13892. https://doi.org/10.1039/c4ta02203c Simon, P. and Gogotsi, Y., Materials for electrochemical capacitors, Nat. Mater., 2008, vol. 7, no. 11, p. 845. https://doi.org/10.1038/nmat2297 Zhang, S. and Pan, N., Supercapacitors performance evaluation, Adv. Energy Mater., 2014, vol. 5, no. 6, p. 1401401. https://doi.org/10.1002/aenm.201401401 Zhang, B., Quan, W., Lee, C., Park, S.-K., et al., One-step facile solvothermal synthesis of copper ferrite–graphene composite as a high-performance supercapacitor material, ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 4, p. 2404. https://doi.org/10.1021/am507014w Li, L., Bi, H., Gai, S., He, F., et al., Uniformly dispersed ZnFe2O4 nanoparticles on nitrogen-modified graphene for high-performance supercapacitor as electrode, Sci. Rep., 2017, vol. 7, p. 43116. https://doi.org/10.1038/srep43116 Bandgar, S., Vadiyar, M.M., Ling, Y.-C., Chang, J.-Y., et al., Metal precursor dependent synthesis of NiFe2O4 thin films for high-performance flexible symmetric supercapacitor, ACS Appl. Energy Mater., 2018, vol. 1, no. 2, p. 638. https://doi.org/10.1021/acsaem.7b00163 Zhu, M., Meng, D., Wang, C., and Diao, G., Facile fabrication of hierarchically porous CuFe2O4 nanospheres with enhanced capacitance property, ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 13, p. 6030. https://doi.org/10.1021/am4007353 Dhanda, R. and Kidwai, M., Magnetically separable CuFe2O4/reduced graphene oxide nanocomposites: As a highly active catalyst for solvent free oxidative coupling of amines to imines, RSC Adv., 2016, vol. 6, p. 53430. https://doi.org/10.1039/c6ra08868f Li, M., Xiong, Y., Liu, X., Bo, X., et al., Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction, Nanoscale, 2015, vol. 7, p. 8920. https://doi.org/10.1039/C4NR07243J Benvidi, A., Nafar, M.T., Jahanbani, S., Tezerjani, M.D., et al., Developing an electrochemical sensor based on a carbon paste electrode modified with nano-composite of reduced graphene oxide and CuFe2O4 nanoparticles for determination of hydrogen peroxide, Mater. Sci. Eng., 2017, vol. C75, p. 1435. https://doi.org/10.1016/j.msec.2017.03.062 Kartikeyan, C., Ramachandran, K., Sheet, S., Yoo, D.J., et al., Pigeon-excreta-mediated synthesis of reduced graphene oxide (rGO)/CuFe2O4 nanocomposite and its catalytic activity towards sensitive and selective hydrogen peroxide detection, ACS Sustainable Chem. Eng., 2017, vol. 5, p. 4897. https://doi.org/10.1021/acssuschemeng.7b00314 Liu, Y., Niu, Z., Lu, Y., Zhang, L., et al., Facile synthesis of CuFe2O4 crystals efficient for water oxidation and H2O2 reduction, J. Alloys Compd., 2018, vol. 735, p. 654. https://doi.org/10.1016/j.jallcom.2017.11.181 Xia, H., Li, J., Ma, L., Liu, Q., et al., Electrospun porous CuFe2O4 nanotubes on nickel foam for nonenzymatic voltammetric determination of glucose and hydrogen peroxide, J. Alloys Compd., 2018, vol. 739, p. 764. https://doi.org/10.1016/j.jallcom.2017.12.187 Kim, Y.I., Kim, D. and Lee, C.S., Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method, Phys. B: Cond. Matter, 2003, vol. 337, nos. 1–4, p. 42. https://doi.org/10.1016/S0921-4526(03)00322-3 Shafi, K.V.P.M., Gediankem, A., and Prozorov, R., Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles, Chem. Mater., 1998, vol. 10, no. 11, p. 3445. https://doi.org/10.1021/cm980182k Panda, R.N., Gajbhiye, N.S., and Balaji, G., Magnetic properties of interacting single domain Fe3O4 particles, J. Alloys Compd., 2001, vol. 326, nos. 1–2, p. 50. https://doi.org/10.1016/S0925-8388(01)01225-7 Ahn, Y., Choi, E.J., Kim, S. and Ok, H.N., Magnetization and Mössbauer study of cobalt ferrite particles from nanophase cobalt iron carbonate, Mater. Lett., 2001, vol. 50, no. 1, p. 47. https://doi.org/10.1016/S0167-577X(00)00412-2 Lal, B. and Rastogi, P.K., Microwave assisted synthesis of chromium substituted nickel ferrite spinel for oxygen evolution reaction, Orbital: The Electron. J. Chem., 2020, vol. 12, no. 3, p. 154. https://doi.org/10.17807/orbital.v12i3.1507 Senthil, S.M., Jayaprakash, R., Singh, V.N., Mehta, B.R., et al., Effect of annealing on dielectric property in Ni1 – xCoxFe2O4 nanoparticles synthesized using albumen (egg white), J. Nano Res., 2008, vol. 4, no. 6, p. 107. https://doi.org/10.4028/www.scientific.net/JNanoR.6.205 Mine, Y., Recent advances in the understanding of egg white protein functionality, Trends Food Sci. Technol., 1995, vol. 6, no. 7, p. 225. https://doi.org/10.1016/S0924-2244(00)89083-4 Yadav, R., Jhasaketan, and Singh, N.K., Electrocatalytic activity of NixFe3 – xO4 (0 ≤ x ≤ 1.5) obtained by natural egg ovalbumin for alkaline water electrolysis, Int. J. Electrochem. Sci., 2015, vol. 10, p. 9297. Singh, R.N., Singh, J.P., Lal, B., Thomas, M.J.K., et al., New NiFe2 − xCrxO4 spinel films for O2 evolution in alkaline solutions, Electrochim. Acta, 2006, vol. 51, no. 25, p. 5515. https://doi.org/10.1016/j.electacta.2006.02.028 Lal, B., Singh, N.K., Samuel, S., and Singh, R.N., Electrocatalytic properties of CuxCo3 – xO4 (0 ≤ x ≤ 1) obtained by a new precipitation method for oxygen evolution, J. New. Mat. Electrochem. Sys., 1999, vol. 2, no. 1, p. 59. Li, P., Ma, R., Zhau, Y., Chen, Y., et al., Spinel nickel ferrite nanoparticles strongly cross-linked with multiwalled carbon nanotubes as a bi-efficient electrocatalyst for oxygen reduction and oxygen evolution, RSC Adv., 2015, vol. 5, p. 73834. Vergis, B.R., Hari Krishna, R., Kottam, N., et al., Removal of malachite green from aqueous solution by magnetic CuFe2O4 nano-adsorbent synthesized by one-pot solution combustion method, J. Nanostruct. Chem., 2018, vol. 8, p. 1. https://doi.org/10.1007/s40097-017-0249-y Panchal Reddy, M., Madhuri, W., Shadhana, K., Kim, I.G., et al., Microwave sintering of nickel ferrite nanoparticles processed via sol-gel method, J. Sol-Gel Sci. Technol., 2014, vol. 70, no. 3, p. 400. https://doi.org/10.1007/s10971-014-3295-7 Singh, N.K., Yadav, M.K., Parihar, R., and Gangwar, C., Egg white mediated sol-gel synthesis of cobalt ferrites and their electrocatalytic activity towards alkaline water electrolysis, J. New Mater. Electrochem. Syst., 2020, vol. 23, no. 2, p. 87. https://doi.org/10.14447/jnmes.v23i2.a05 Al-Hoshan, M.S., Singh, J.P., Al-Mayouf, A.M., Al-Suhybani, A.A., et al., Synthesis, physicochemical and electrochemical properties of nickel ferrite spinels obtained by hydrothermal method for the oxygen evolution reaction (OER), Int. J. Electrochem. Sci., 2012, vol. 7, p. 4959. Lal, B., Electrocatalytic oxygen evolution reaction on Mg, Al and Fe doped spinel oxides, Ind. J. Chem., 2021, vol. 60A, no. 10, p. 1303. Singh, N.K. and Singh, R.N., Electrocatalytic properties of spinel type NixFe3 – xO4 synthesized at low temperature for oxygen evolution in KOH solutions, Ind. J. Chem., 1999, vol. 38A, no. 5, p. 491. https://doi.org/10.1002/chin.199644018 Orehotsky, J., Huang, H., Davison, C.R., and Srinivasan, S., Oxygen evolution on NixFe3 − xO4 electrodes, J. Electroanal. Chem., Interfacial Electrochem., 1979, vol. 95, no. 2, p. 233. https://doi.org/10.1016/S0022-0728(79)80324-1 Iwakura, C., Nishioka, M., and Tamura, H., Oxygen evolution on spinel-type ferrite film electrodes, Nippon Kagaku Kaishi, 1982, vol. 1982, no. 7, p. 1136 [In Japanese]. https://doi.org/10.1246/nikkashi.1982.1136 Singh, N.K., Yadav, Ritu and Yadav, M.K., Electrocatalytic properties of egg-white sol-gel derived MnxFe3 – xO4 (0 ≤ x ≤ 1.5) for alkaline water electrolysis, J. New Mater. Electrochem. Syst., 2016, vol. 19, p. 209. Singh, N.K., Yadav, M.K, Parihar, R. and Kumar, I., Low-temperature synthesis of spinel-type CoxFe3 – xO4 (0 ≤ x ≤ 1.5) oxide and its application for oxygen evolution electrocatalysis in alkaline solution, Int. J. Electrochem. Sci., 2020, vol. 15, p. 6605. https://doi.org/10.20964/2020.07.10 Yadav, M. K., Gangwar, C., and Singh, N. K., Low-temperature synthesis and characterization of NixFe3 – xO4 (0 ≤ x ≤ 1.5) electrodes for oxygen evolution reaction in alkaline medium, J. New Mater. Electrochem. Syst., 2020, vol. 23, no. 2, p. 78. Singh, N.K. and Yadav, R., Electrocatalytic activity of NixFe3 – xO4 (0 ≤ x ≤ 1.5) film electrode for oxygen evolution in KOH solutions, Ind. J. Chem. Tech., 2018, vol. 25, p. 189. Silva, V.D., Ferreira, L.S., Simoes, T.A., Medeiros, E.S., et al., 1D hollow MFe2O4 (M = Cu, Co, Ni) fibres by solution blow spinning for oxygen evolution reaction, J. Colloid Interface Sci., 2019, vol. 540, p. 59. https://doi.org/10.1016/j.jcis.2019.01.003