Chu, 2012, Nature, 488, 294, 10.1038/nature11475
Cook, 2010, Chem. Rev., 110, 6474, 10.1021/cr100246c
Benson, 2009, Chem. Soc. Rev., 38, 89, 10.1039/B804323J
Turner, 2004, Science, 305, 972, 10.1126/science.1103197
Zeng, 2010, Prog. Energy Combust. Sci., 36, 307, 10.1016/j.pecs.2009.11.002
Marini, 2012, Electrochim. Acta, 82, 384, 10.1016/j.electacta.2012.05.011
Carrette, 2001, Fuel Cells, 1, 5, 10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G
Aricò, 2001, Fuel Cells, 1, 133, 10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
Palacin, 2009, Chem. Soc. Rev., 38, 2565, 10.1039/b820555h
Suntivich, 2011, Nat. Chem., 3, 546, 10.1038/nchem.1069
Cheng, 2012, Chem. Soc. Rev., 41, 2172, 10.1039/c1cs15228a
Frydendal, 2014, ChemElectroChem, 1, 2075, 10.1002/celc.201402262
Lee, 2012, J. Phys. Chem. Lett., 3, 399, 10.1021/jz2016507
Reier, 2012, ACS Catal., 2, 1765, 10.1021/cs3003098
Vuković, 1987, J. Appl. Electrochem., 17, 737, 10.1007/BF01007809
Kötz, 1983, J. Electrochem. Soc., 130, 825, 10.1149/1.2119829
Antolini, 2014, ACS Catal., 4, 1426, 10.1021/cs4011875
Kötz, 1984, J. Electrochem. Soc., 131, 72, 10.1149/1.2115548
Cherevko, 2016, Catal. Today, 262, 170, 10.1016/j.cattod.2015.08.014
Matsumoto, 1980, J. Electrochem. Soc., 127, 2360, 10.1149/1.2129415
Bockris, 1984, J. Electrochem. Soc., 131, 290, 10.1149/1.2115565
Suntivich, 2011, Science, 334, 1383, 10.1126/science.1212858
Vojvodic, 2011, Science, 334, 1355, 10.1126/science.1215081
De Chialvo, 1993, Electrochim. Acta, 38, 2247, 10.1016/0013-4686(93)80105-9
Singh, 1999, Indian J. Chem., 38A, 5
Nikolov, 1997, J. Electroanal. Chem., 429, 157, 10.1016/S0022-0728(96)05013-9
Subbaraman, 2012, Nat. Mater., 11, 550, 10.1038/nmat3313
Li, 2015, Nanoscale, 7, 8920, 10.1039/C4NR07243J
Liang, 2015, Nano Lett., 15, 1421, 10.1021/nl504872s
Lu, 2014, Nat. Commun., 5, 4345, 10.1038/ncomms5345
Song, 2014, Nat. Commun., 5, 4477, 10.1038/ncomms5477
Kanan, 2008, Science, 321, 1072, 10.1126/science.1162018
Kanan, 2009, Chem. Soc. Rev., 38, 109, 10.1039/B802885K
Jeong, 2015, ACS Catal., 5, 4624, 10.1021/acscatal.5b01269
Liu, 2015, Energy Environ. Sci., 8, 1719, 10.1039/C5EE01290B
Xing, 2014, J. Mater. Chem. A, 2, 18435, 10.1039/C4TA03776F
Nie, 2016, J. Mater. Chem. A, 4, 2438, 10.1039/C5TA09536K
Gao, 2015, J. Mater. Chem. A, 3, 17763, 10.1039/C5TA04058B
Huynh, 2014, J. Am. Chem. Soc., 136, 6002, 10.1021/ja413147e
Bediako, 2013, J. Am. Chem. Soc., 135, 3662, 10.1021/ja3126432
Chen, 2016, ACS Appl. Mater. Interfaces, 8, 5509, 10.1021/acsami.5b10099
Ganesan, 2015, ACS Catal., 5, 3625, 10.1021/acscatal.5b00154
Zhu, 2016, Chem. Commun., 52, 1486, 10.1039/C5CC08064A
Dong, 2016, J. Mater. Chem. A, 4, 13499, 10.1039/C6TA03177C
Xia, 2016, Adv. Mater., 28, 77, 10.1002/adma.201503906
Wang, 2016, ACS Appl. Mater. Interfaces, 8, 19386, 10.1021/acsami.6b03392
Gao, 2012, J. Am. Chem. Soc., 134, 2930, 10.1021/ja211526y
Zheng, 2015, Small, 11, 182, 10.1002/smll.201401423
Liao, 2016, Electrochim. Acta, 194, 59, 10.1016/j.electacta.2016.02.046
Liu, 2014, J. Am. Chem. Soc., 136, 15670, 10.1021/ja5085157
Xu, 2016, Nat. Commun., 7, 12324, 10.1038/ncomms12324
Swesi, 2016, Energy Environ. Sci., 9, 1771, 10.1039/C5EE02463C
Feng, 2015, J. Am. Chem. Soc., 137, 14023, 10.1021/jacs.5b08186
Liu, 2015, Angew. Chem., Int. Ed., 127, 11383, 10.1002/ange.201505320
Yang, 2016, Adv. Funct. Mater., 26, 4712, 10.1002/adfm.201600674
McKendry, 2016, ACS Catal., 6, 7393, 10.1021/acscatal.6b01878
Dou, 2016, Energy Environ. Sci., 9, 1320, 10.1039/C6EE00054A
Liu, 2015, Electrochem. Commun., 60, 92, 10.1016/j.elecom.2015.08.011
Chen, 2015, Angew. Chem., Int. Ed., 54, 14710, 10.1002/anie.201506480
Zhang, 2016, Angew. Chem., Int. Ed., 55, 8670, 10.1002/anie.201604372
Liu, 2016, ACS Appl. Mater. Interfaces, 8, 2158, 10.1021/acsami.5b10727
Ryu, 2015, ACS Catal., 5, 4066, 10.1021/acscatal.5b00349
Stern, 2015, Energy Environ. Sci., 8, 2347, 10.1039/C5EE01155H
Chen, 2016, Inorg. Chem. Front., 3, 236, 10.1039/C5QI00197H
Xu, 2015, J. Am. Chem. Soc., 137, 4119, 10.1021/ja5119495
Yu, 2016, Energy Environ. Sci., 9, 1246, 10.1039/C6EE00100A
Read, 2016, ACS Appl. Mater. Interfaces, 8, 12798, 10.1021/acsami.6b02352
Fu, 2016, ACS Energy Lett., 1, 792, 10.1021/acsenergylett.6b00408
You, 2016, ACS Catal., 6, 714, 10.1021/acscatal.5b02193
Jiao, 2016, Chem. Sci., 7, 1690, 10.1039/C5SC04425A
Li, 2016, J. Am. Chem. Soc., 138, 4006, 10.1021/jacs.6b01543
Chang, 2015, ACS Catal., 5, 6874, 10.1021/acscatal.5b02076
Lei, 2016, ACS Catal., 6, 6429, 10.1021/acscatal.6b01579
Wurster, 2016, J. Am. Chem. Soc., 138, 3623, 10.1021/jacs.5b10484
Sun, 2016, Chem. Sci., 7, 5640, 10.1039/C6SC02083F
Sheehan, 2015, Nat. Commun., 6, 6469, 10.1038/ncomms7469
Okamura, 2016, Nature, 530, 465, 10.1038/nature16529
Zhang, 2015, Chem. Rev., 115, 10307, 10.1021/acs.chemrev.5b00267
Mirzakulova, 2012, Nat. Chem., 4, 794, 10.1038/nchem.1439
Cheng, 2015, Appl. Catal., B, 163, 96, 10.1016/j.apcatb.2014.07.049
Zhao, 2015, Chem. Soc. Rev., 44, 7968, 10.1039/C5CS00289C
Zhang, 2015, Nat. Nanotechnol., 10, 444, 10.1038/nnano.2015.48
Lu, 2015, J. Am. Chem. Soc., 137, 2901, 10.1021/ja509879r
Chen, 2014, Adv. Mater., 26, 2925, 10.1002/adma.201305608
Tian, 2014, ChemSusChem, 7, 2125, 10.1002/cssc.201402118
Ma, 2014, Angew. Chem., Int. Ed., 53, 7281, 10.1002/anie.201403946
Zhang, 2014, Nat. Chem., 6, 362, 10.1038/nchem.1874
Louie, 2013, J. Am. Chem. Soc., 135, 12329, 10.1021/ja405351s
Trześniewski, 2015, J. Am. Chem. Soc., 137, 15112, 10.1021/jacs.5b06814
Ahn, 2015, J. Am. Chem. Soc., 137, 612, 10.1021/ja511740h
Ahn, 2015, Anal. Chem., 87, 12276, 10.1021/acs.analchem.5b03542
Ahn, 2016, J. Am. Chem. Soc., 138, 313, 10.1021/jacs.5b10977
Chen, 2015, J. Am. Chem. Soc., 137, 15090, 10.1021/jacs.5b10699
Tung, 2015, Nat. Commun., 6, 8106, 10.1038/ncomms9106
Bergmann, 2015, Nat. Commun., 6, 8625, 10.1038/ncomms9625
Wang, 2015, Adv. Energy Mater., 5, 1500091, 10.1002/aenm.201500091
Abbott, 2016, Chem. Mater., 28, 6591, 10.1021/acs.chemmater.6b02625
Wang, 2015, J. Phys. Chem. C, 119, 19573, 10.1021/acs.jpcc.5b02685
Ma, 2015, ACS Nano, 9, 1977, 10.1021/nn5069836
Bockris, 1956, J. Chem. Phys., 24, 817, 10.1063/1.1742616
Damjanovic, 1966, Electrochim. Acta, 11, 791, 10.1016/0013-4686(66)87056-1
Conway, 1964, Electrochim. Acta, 9, 1599, 10.1016/0013-4686(64)80088-8
Doyle, 2013, J. Electrochem. Soc., 160, H142, 10.1149/2.015303jes
Shinagawa, 2015, Sci. Rep., 5, 13801, 10.1038/srep13801
Nørskov, 2004, J. Phys. Chem. B, 108, 17886, 10.1021/jp047349j
Rossmeisl, 2007, J. Electroanal. Chem., 607, 83, 10.1016/j.jelechem.2006.11.008
Man, 2011, ChemCatChem, 3, 1159, 10.1002/cctc.201000397
Halck, 2014, Phys. Chem. Chem. Phys., 16, 13682, 10.1039/C4CP00571F
García-Mota, 2012, J. Phys. Chem. C, 116, 21077, 10.1021/jp306303y
Bajdich, 2013, J. Am. Chem. Soc., 135, 13521, 10.1021/ja405997s
A. J. Bard and L. R.Faulkner, Electrochemical methods: fundamentals and applications, Wiley, 1980
J. O. Bockris , A. K. N.Reddy and M.Gamboa-Aldeco, Modern Electrochemistry 2A. Fundamentals of Electrodics, Kluwer Academic, New York, 2000
Tafel, 1905, Z. Phys. Chem., 50, 641, 10.1515/zpch-1905-5043
Burstein, 2005, Corros. Sci., 47, 2858, 10.1016/j.corsci.2005.07.002
J. O. M. Bockris and A. K. N.Reddy, Modern Electrochemistry, Plenum, New York, 1970
Guidelli, 2014, Pure Appl. Chem., 86, 4
McCrory, 2015, J. Am. Chem. Soc., 137, 4347, 10.1021/ja510442p
Seitz, 2016, Science, 353, 1011, 10.1126/science.aaf5050
Marshall, 2010, Electrochim. Acta, 55, 1978, 10.1016/j.electacta.2009.11.018
Owe, 2012, Electrochim. Acta, 70, 158, 10.1016/j.electacta.2012.03.041
Mayousse, 2011, Int. J. Hydrogen Energy, 36, 10474, 10.1016/j.ijhydene.2011.05.139
Mattos-Costa, 1998, Electrochim. Acta, 44, 1515, 10.1016/S0013-4686(98)00275-8
Audichon, 2016, J. Phys. Chem. C, 120, 2562, 10.1021/acs.jpcc.5b11868
Lee, 2016, J. Am. Chem. Soc., 138, 3541, 10.1021/jacs.6b00036
Yagi, 2015, Nat. Commun., 6, 8249, 10.1038/ncomms9249
Zhu, 2016, Chem. Mater., 28, 1691, 10.1021/acs.chemmater.5b04457
R. G. Burns , Mineralogical applications of crystal field theory, Cambridge University Press, 1993
Wang, 2016, J. Am. Chem. Soc., 138, 36, 10.1021/jacs.5b10525
Liu, 2014, Chem. Mater., 26, 1889, 10.1021/cm4040903
Al-Hoshan, 2012, Int. J. Electrochem. Sci., 7, 15, 10.1016/S1452-3981(23)19595-2
Singh, 1999, Int. J. Hydrogen Energy, 24, 433, 10.1016/S0360-3199(98)00084-6
Hirai, 2016, RSC Adv., 6, 2019, 10.1039/C5RA22873E
Koza, 2012, Chem. Mater., 24, 3567, 10.1021/cm3012205
Chen, 2015, Phys. Chem. Chem. Phys., 17, 29387, 10.1039/C5CP02876K
Al-Mamun, 2016, Small, 12, 2866, 10.1002/smll.201600549
Ma, 2014, J. Am. Chem. Soc., 136, 13925, 10.1021/ja5082553
Ling, 2016, Nat. Commun., 7, 12876, 10.1038/ncomms12876
Ma, 2016, Mater. Today, 19, 265, 10.1016/j.mattod.2015.10.012
Corrigan, 1987, J. Electrochem. Soc., 134, 377, 10.1149/1.2100463
Trotochaud, 2014, J. Am. Chem. Soc., 136, 6744, 10.1021/ja502379c
Bode, 1966, Electrochim. Acta, 11, 1079, 10.1016/0013-4686(66)80045-2
Klaus, 2015, J. Phys. Chem. C, 119, 7243, 10.1021/acs.jpcc.5b00105
Li, 2014, ACS Catal., 4, 1148, 10.1021/cs401245q
Friebel, 2015, J. Am. Chem. Soc., 137, 1305, 10.1021/ja511559d
Long, 2014, Angew. Chem., Int. Ed., 53, 7584, 10.1002/anie.201402822
Burke, 2015, J. Am. Chem. Soc., 137, 3638, 10.1021/jacs.5b00281
Diaz-Morales, 2015, ACS Catal., 5, 5380, 10.1021/acscatal.5b01638
Zhang, 2016, Science, 352, 333, 10.1126/science.aaf1525
Burke, 2015, J. Phys. Chem. Lett., 6, 3737, 10.1021/acs.jpclett.5b01650
Zou, 2015, Chem. Mater., 27, 8011, 10.1021/acs.chemmater.5b03404
Feng, 2016, Adv. Mater., 28, 4698, 10.1002/adma.201600054
Augustyn, 2015, J. Phys. Chem. Lett., 6, 3787, 10.1021/acs.jpclett.5b01538
Smith, 2013, J. Am. Chem. Soc., 135, 11580, 10.1021/ja403102j
Dincă, 2010, Proc. Natl. Acad. Sci. U. S. A., 107, 10337, 10.1073/pnas.1001859107
Takashima, 2012, J. Am. Chem. Soc., 134, 1519, 10.1021/ja206511w
Risch, 2009, J. Am. Chem. Soc., 131, 6936, 10.1021/ja902121f
Kanan, 2010, J. Am. Chem. Soc., 132, 13692, 10.1021/ja1023767
McAlpin, 2010, J. Am. Chem. Soc., 132, 6882, 10.1021/ja1013344
Surendranath, 2010, J. Am. Chem. Soc., 132, 16501, 10.1021/ja106102b
Chen, 2015, ACS Appl. Mater. Interfaces, 7, 21852, 10.1021/acsami.5b06195
Ahn, 2013, Adv. Funct. Mater., 23, 227, 10.1002/adfm.201200920
Bediako, 2012, J. Am. Chem. Soc., 134, 6801, 10.1021/ja301018q
McKendry, 2016, ACS Catal., 6, 7393, 10.1021/acscatal.6b01878
Jiang, 2016, Nano Energy, 27, 526, 10.1016/j.nanoen.2016.07.032
Mabayoje, 2016, ACS Energy Lett., 1, 195, 10.1021/acsenergylett.6b00084
Gao, 2014, ACS Nano, 8, 3970, 10.1021/nn500880v
Safizadeh, 2015, Int. J. Hydrogen Energy, 40, 256, 10.1016/j.ijhydene.2014.10.109
Xiao, 2015, Adv. Energy Mater., 5, 1500985, 10.1002/aenm.201500985
Zeng, 2015, J. Mater. Chem. A, 3, 14942, 10.1039/C5TA02974K
Duan, 2016, ACS Nano, 10, 8738, 10.1021/acsnano.6b04252
Blakemore, 2015, Chem. Rev., 115, 12974, 10.1021/acs.chemrev.5b00122
Gersten, 1982, J. Am. Chem. Soc., 104, 4029, 10.1021/ja00378a053
Parent, 2014, ChemSusChem, 7, 2070, 10.1002/cssc.201402322
Dau, 2010, ChemCatChem, 2, 724, 10.1002/cctc.201000126
Schulze, 2016, Nat. Chem., 8, 576, 10.1038/nchem.2503
Kauffman, 2016, ACS Catal., 6, 1225, 10.1021/acscatal.5b02633
Schöfberger, 2016, Angew. Chem., Int. Ed., 55, 2350, 10.1002/anie.201508404
Ullman, 2016, J. Am. Chem. Soc., 138, 4229, 10.1021/jacs.6b00762
Qu, 2016, Nano Energy, 19, 373, 10.1016/j.nanoen.2015.11.027
Zhao, 2013, Nat. Commun., 4, 2390, 10.1038/ncomms3390
Borup, 2007, Chem. Rev., 107, 3904, 10.1021/cr050182l
Ma, 2016, Angew. Chem., Int. Ed., 55, 1138, 10.1002/anie.201509758
Li, 2014, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35
Churchill, 2014, Nat. Nanotechnol., 9, 330, 10.1038/nnano.2014.85
Jiang, 2016, Angew. Chem., Int. Ed., 55, 13849, 10.1002/anie.201607393
Seo, 2016, ACS Catal., 6, 4347, 10.1021/acscatal.6b00553
Deng, 2016, ACS Catal., 6, 2473, 10.1021/acscatal.6b00205
Chou, 2011, ChemSusChem, 4, 1566, 10.1002/cssc.201100075
Krasil'shchikov, 1963, Zh. Fiz. Khim., 37, 7
Conway, 1962, Can. J. Chem., 40, 1690, 10.1139/v62-256