Xuất xúc tác điện hóa cho phản ứng tiến hoá oxy: sự phát triển gần đây và triển vọng trong tương lai

Chemical Society Reviews - Tập 46 Số 2 - Trang 337-365
Nian-Tzu Suen1,2,3,4, Sung‐Fu Hung1,2,3,4, Quan Quan5,6,7,8,9, Nan Zhang5,6,7,8,9, Yi‐Jun Xu5,6,7,8,9, Hao Ming Chen1,2,3,4
1Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, Republic of China
3Republic of China
4Taipei 10617
5China
6College of Chemistry
7Fuzhou
8Fuzhou University
9State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China

Tóm tắt

Chúng tôi xem xét các khía cạnh cơ bản của oxit kim loại, chalcogenide kim loại và pnictide kim loại như các chất xúc tác điện hóa hiệu quả cho phản ứng tiến hoá oxy.

Từ khóa

#xúc tác điện hóa #phản ứng tiến hoá oxy #oxit kim loại #chalcogenide kim loại #pnictide kim loại #phát triển khoa học

Tài liệu tham khảo

Chu, 2012, Nature, 488, 294, 10.1038/nature11475

Cook, 2010, Chem. Rev., 110, 6474, 10.1021/cr100246c

Benson, 2009, Chem. Soc. Rev., 38, 89, 10.1039/B804323J

Turner, 2004, Science, 305, 972, 10.1126/science.1103197

Zeng, 2010, Prog. Energy Combust. Sci., 36, 307, 10.1016/j.pecs.2009.11.002

Marini, 2012, Electrochim. Acta, 82, 384, 10.1016/j.electacta.2012.05.011

Carrette, 2001, Fuel Cells, 1, 5, 10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G

Aricò, 2001, Fuel Cells, 1, 133, 10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5

Palacin, 2009, Chem. Soc. Rev., 38, 2565, 10.1039/b820555h

Suntivich, 2011, Nat. Chem., 3, 546, 10.1038/nchem.1069

Cheng, 2012, Chem. Soc. Rev., 41, 2172, 10.1039/c1cs15228a

Frydendal, 2014, ChemElectroChem, 1, 2075, 10.1002/celc.201402262

Lee, 2012, J. Phys. Chem. Lett., 3, 399, 10.1021/jz2016507

Reier, 2012, ACS Catal., 2, 1765, 10.1021/cs3003098

Vuković, 1987, J. Appl. Electrochem., 17, 737, 10.1007/BF01007809

Kötz, 1983, J. Electrochem. Soc., 130, 825, 10.1149/1.2119829

Antolini, 2014, ACS Catal., 4, 1426, 10.1021/cs4011875

Kötz, 1984, J. Electrochem. Soc., 131, 72, 10.1149/1.2115548

Cherevko, 2016, Catal. Today, 262, 170, 10.1016/j.cattod.2015.08.014

Matsumoto, 1980, J. Electrochem. Soc., 127, 2360, 10.1149/1.2129415

Bockris, 1984, J. Electrochem. Soc., 131, 290, 10.1149/1.2115565

Suntivich, 2011, Science, 334, 1383, 10.1126/science.1212858

Vojvodic, 2011, Science, 334, 1355, 10.1126/science.1215081

De Chialvo, 1993, Electrochim. Acta, 38, 2247, 10.1016/0013-4686(93)80105-9

Singh, 1999, Indian J. Chem., 38A, 5

Nikolov, 1997, J. Electroanal. Chem., 429, 157, 10.1016/S0022-0728(96)05013-9

Subbaraman, 2012, Nat. Mater., 11, 550, 10.1038/nmat3313

Li, 2015, Nanoscale, 7, 8920, 10.1039/C4NR07243J

Liang, 2015, Nano Lett., 15, 1421, 10.1021/nl504872s

Lu, 2014, Nat. Commun., 5, 4345, 10.1038/ncomms5345

Song, 2014, Nat. Commun., 5, 4477, 10.1038/ncomms5477

Kanan, 2008, Science, 321, 1072, 10.1126/science.1162018

Kanan, 2009, Chem. Soc. Rev., 38, 109, 10.1039/B802885K

Jeong, 2015, ACS Catal., 5, 4624, 10.1021/acscatal.5b01269

Liu, 2015, Energy Environ. Sci., 8, 1719, 10.1039/C5EE01290B

Xing, 2014, J. Mater. Chem. A, 2, 18435, 10.1039/C4TA03776F

Nie, 2016, J. Mater. Chem. A, 4, 2438, 10.1039/C5TA09536K

Gao, 2015, J. Mater. Chem. A, 3, 17763, 10.1039/C5TA04058B

Huynh, 2014, J. Am. Chem. Soc., 136, 6002, 10.1021/ja413147e

Bediako, 2013, J. Am. Chem. Soc., 135, 3662, 10.1021/ja3126432

Chen, 2016, ACS Appl. Mater. Interfaces, 8, 5509, 10.1021/acsami.5b10099

Ganesan, 2015, ACS Catal., 5, 3625, 10.1021/acscatal.5b00154

Zhu, 2016, Chem. Commun., 52, 1486, 10.1039/C5CC08064A

Dong, 2016, J. Mater. Chem. A, 4, 13499, 10.1039/C6TA03177C

Xia, 2016, Adv. Mater., 28, 77, 10.1002/adma.201503906

Wang, 2016, ACS Appl. Mater. Interfaces, 8, 19386, 10.1021/acsami.6b03392

Gao, 2012, J. Am. Chem. Soc., 134, 2930, 10.1021/ja211526y

Zheng, 2015, Small, 11, 182, 10.1002/smll.201401423

Liao, 2016, Electrochim. Acta, 194, 59, 10.1016/j.electacta.2016.02.046

Liu, 2014, J. Am. Chem. Soc., 136, 15670, 10.1021/ja5085157

Xu, 2016, Nat. Commun., 7, 12324, 10.1038/ncomms12324

Swesi, 2016, Energy Environ. Sci., 9, 1771, 10.1039/C5EE02463C

Feng, 2015, J. Am. Chem. Soc., 137, 14023, 10.1021/jacs.5b08186

Liu, 2015, Angew. Chem., Int. Ed., 127, 11383, 10.1002/ange.201505320

Yang, 2016, Adv. Funct. Mater., 26, 4712, 10.1002/adfm.201600674

McKendry, 2016, ACS Catal., 6, 7393, 10.1021/acscatal.6b01878

Dou, 2016, Energy Environ. Sci., 9, 1320, 10.1039/C6EE00054A

Liu, 2015, Electrochem. Commun., 60, 92, 10.1016/j.elecom.2015.08.011

Chen, 2015, Angew. Chem., Int. Ed., 54, 14710, 10.1002/anie.201506480

Zhang, 2016, Angew. Chem., Int. Ed., 55, 8670, 10.1002/anie.201604372

Liu, 2016, ACS Appl. Mater. Interfaces, 8, 2158, 10.1021/acsami.5b10727

Ryu, 2015, ACS Catal., 5, 4066, 10.1021/acscatal.5b00349

Stern, 2015, Energy Environ. Sci., 8, 2347, 10.1039/C5EE01155H

Chen, 2016, Inorg. Chem. Front., 3, 236, 10.1039/C5QI00197H

Xu, 2015, J. Am. Chem. Soc., 137, 4119, 10.1021/ja5119495

Yu, 2016, Energy Environ. Sci., 9, 1246, 10.1039/C6EE00100A

Read, 2016, ACS Appl. Mater. Interfaces, 8, 12798, 10.1021/acsami.6b02352

Fu, 2016, ACS Energy Lett., 1, 792, 10.1021/acsenergylett.6b00408

You, 2016, ACS Catal., 6, 714, 10.1021/acscatal.5b02193

Jiao, 2016, Chem. Sci., 7, 1690, 10.1039/C5SC04425A

Li, 2016, J. Am. Chem. Soc., 138, 4006, 10.1021/jacs.6b01543

Chang, 2015, ACS Catal., 5, 6874, 10.1021/acscatal.5b02076

Lei, 2016, ACS Catal., 6, 6429, 10.1021/acscatal.6b01579

Wurster, 2016, J. Am. Chem. Soc., 138, 3623, 10.1021/jacs.5b10484

Sun, 2016, Chem. Sci., 7, 5640, 10.1039/C6SC02083F

Sheehan, 2015, Nat. Commun., 6, 6469, 10.1038/ncomms7469

Okamura, 2016, Nature, 530, 465, 10.1038/nature16529

Zhang, 2015, Chem. Rev., 115, 10307, 10.1021/acs.chemrev.5b00267

Mirzakulova, 2012, Nat. Chem., 4, 794, 10.1038/nchem.1439

Cheng, 2015, Appl. Catal., B, 163, 96, 10.1016/j.apcatb.2014.07.049

Zhao, 2015, Chem. Soc. Rev., 44, 7968, 10.1039/C5CS00289C

Zhang, 2015, Nat. Nanotechnol., 10, 444, 10.1038/nnano.2015.48

Lu, 2015, J. Am. Chem. Soc., 137, 2901, 10.1021/ja509879r

Chen, 2014, Adv. Mater., 26, 2925, 10.1002/adma.201305608

Tian, 2014, ChemSusChem, 7, 2125, 10.1002/cssc.201402118

Ma, 2014, Angew. Chem., Int. Ed., 53, 7281, 10.1002/anie.201403946

Zhang, 2014, Nat. Chem., 6, 362, 10.1038/nchem.1874

Louie, 2013, J. Am. Chem. Soc., 135, 12329, 10.1021/ja405351s

Trześniewski, 2015, J. Am. Chem. Soc., 137, 15112, 10.1021/jacs.5b06814

Ahn, 2015, J. Am. Chem. Soc., 137, 612, 10.1021/ja511740h

Ahn, 2015, Anal. Chem., 87, 12276, 10.1021/acs.analchem.5b03542

Ahn, 2016, J. Am. Chem. Soc., 138, 313, 10.1021/jacs.5b10977

Chen, 2015, J. Am. Chem. Soc., 137, 15090, 10.1021/jacs.5b10699

Tung, 2015, Nat. Commun., 6, 8106, 10.1038/ncomms9106

Bergmann, 2015, Nat. Commun., 6, 8625, 10.1038/ncomms9625

Wang, 2015, Adv. Energy Mater., 5, 1500091, 10.1002/aenm.201500091

Abbott, 2016, Chem. Mater., 28, 6591, 10.1021/acs.chemmater.6b02625

Wang, 2015, J. Phys. Chem. C, 119, 19573, 10.1021/acs.jpcc.5b02685

Ma, 2015, ACS Nano, 9, 1977, 10.1021/nn5069836

Bockris, 1956, J. Chem. Phys., 24, 817, 10.1063/1.1742616

Damjanovic, 1966, Electrochim. Acta, 11, 791, 10.1016/0013-4686(66)87056-1

Conway, 1964, Electrochim. Acta, 9, 1599, 10.1016/0013-4686(64)80088-8

Doyle, 2013, J. Electrochem. Soc., 160, H142, 10.1149/2.015303jes

Shinagawa, 2015, Sci. Rep., 5, 13801, 10.1038/srep13801

Nørskov, 2004, J. Phys. Chem. B, 108, 17886, 10.1021/jp047349j

Rossmeisl, 2007, J. Electroanal. Chem., 607, 83, 10.1016/j.jelechem.2006.11.008

Man, 2011, ChemCatChem, 3, 1159, 10.1002/cctc.201000397

Halck, 2014, Phys. Chem. Chem. Phys., 16, 13682, 10.1039/C4CP00571F

García-Mota, 2012, J. Phys. Chem. C, 116, 21077, 10.1021/jp306303y

Bajdich, 2013, J. Am. Chem. Soc., 135, 13521, 10.1021/ja405997s

A. J. Bard and L. R.Faulkner, Electrochemical methods: fundamentals and applications, Wiley, 1980

J. O. Bockris , A. K. N.Reddy and M.Gamboa-Aldeco, Modern Electrochemistry 2A. Fundamentals of Electrodics, Kluwer Academic, New York, 2000

Tafel, 1905, Z. Phys. Chem., 50, 641, 10.1515/zpch-1905-5043

Burstein, 2005, Corros. Sci., 47, 2858, 10.1016/j.corsci.2005.07.002

J. O. M. Bockris and A. K. N.Reddy, Modern Electrochemistry, Plenum, New York, 1970

Guidelli, 2014, Pure Appl. Chem., 86, 4

McCrory, 2015, J. Am. Chem. Soc., 137, 4347, 10.1021/ja510442p

Seitz, 2016, Science, 353, 1011, 10.1126/science.aaf5050

Marshall, 2010, Electrochim. Acta, 55, 1978, 10.1016/j.electacta.2009.11.018

Owe, 2012, Electrochim. Acta, 70, 158, 10.1016/j.electacta.2012.03.041

Mayousse, 2011, Int. J. Hydrogen Energy, 36, 10474, 10.1016/j.ijhydene.2011.05.139

Mattos-Costa, 1998, Electrochim. Acta, 44, 1515, 10.1016/S0013-4686(98)00275-8

Audichon, 2016, J. Phys. Chem. C, 120, 2562, 10.1021/acs.jpcc.5b11868

Lee, 2016, J. Am. Chem. Soc., 138, 3541, 10.1021/jacs.6b00036

Yagi, 2015, Nat. Commun., 6, 8249, 10.1038/ncomms9249

Zhu, 2016, Chem. Mater., 28, 1691, 10.1021/acs.chemmater.5b04457

R. G. Burns , Mineralogical applications of crystal field theory, Cambridge University Press, 1993

Wang, 2016, J. Am. Chem. Soc., 138, 36, 10.1021/jacs.5b10525

Liu, 2014, Chem. Mater., 26, 1889, 10.1021/cm4040903

Al-Hoshan, 2012, Int. J. Electrochem. Sci., 7, 15, 10.1016/S1452-3981(23)19595-2

Singh, 1999, Int. J. Hydrogen Energy, 24, 433, 10.1016/S0360-3199(98)00084-6

Hirai, 2016, RSC Adv., 6, 2019, 10.1039/C5RA22873E

Koza, 2012, Chem. Mater., 24, 3567, 10.1021/cm3012205

Chen, 2015, Phys. Chem. Chem. Phys., 17, 29387, 10.1039/C5CP02876K

Al-Mamun, 2016, Small, 12, 2866, 10.1002/smll.201600549

Ma, 2014, J. Am. Chem. Soc., 136, 13925, 10.1021/ja5082553

Ling, 2016, Nat. Commun., 7, 12876, 10.1038/ncomms12876

Ma, 2016, Mater. Today, 19, 265, 10.1016/j.mattod.2015.10.012

Corrigan, 1987, J. Electrochem. Soc., 134, 377, 10.1149/1.2100463

Trotochaud, 2014, J. Am. Chem. Soc., 136, 6744, 10.1021/ja502379c

Bode, 1966, Electrochim. Acta, 11, 1079, 10.1016/0013-4686(66)80045-2

Klaus, 2015, J. Phys. Chem. C, 119, 7243, 10.1021/acs.jpcc.5b00105

Li, 2014, ACS Catal., 4, 1148, 10.1021/cs401245q

Friebel, 2015, J. Am. Chem. Soc., 137, 1305, 10.1021/ja511559d

Long, 2014, Angew. Chem., Int. Ed., 53, 7584, 10.1002/anie.201402822

Burke, 2015, J. Am. Chem. Soc., 137, 3638, 10.1021/jacs.5b00281

Diaz-Morales, 2015, ACS Catal., 5, 5380, 10.1021/acscatal.5b01638

Zhang, 2016, Science, 352, 333, 10.1126/science.aaf1525

Burke, 2015, J. Phys. Chem. Lett., 6, 3737, 10.1021/acs.jpclett.5b01650

Zou, 2015, Chem. Mater., 27, 8011, 10.1021/acs.chemmater.5b03404

Feng, 2016, Adv. Mater., 28, 4698, 10.1002/adma.201600054

Augustyn, 2015, J. Phys. Chem. Lett., 6, 3787, 10.1021/acs.jpclett.5b01538

Smith, 2013, J. Am. Chem. Soc., 135, 11580, 10.1021/ja403102j

Dincă, 2010, Proc. Natl. Acad. Sci. U. S. A., 107, 10337, 10.1073/pnas.1001859107

Takashima, 2012, J. Am. Chem. Soc., 134, 1519, 10.1021/ja206511w

Risch, 2009, J. Am. Chem. Soc., 131, 6936, 10.1021/ja902121f

Kanan, 2010, J. Am. Chem. Soc., 132, 13692, 10.1021/ja1023767

McAlpin, 2010, J. Am. Chem. Soc., 132, 6882, 10.1021/ja1013344

Surendranath, 2010, J. Am. Chem. Soc., 132, 16501, 10.1021/ja106102b

Chen, 2015, ACS Appl. Mater. Interfaces, 7, 21852, 10.1021/acsami.5b06195

Ahn, 2013, Adv. Funct. Mater., 23, 227, 10.1002/adfm.201200920

Bediako, 2012, J. Am. Chem. Soc., 134, 6801, 10.1021/ja301018q

McKendry, 2016, ACS Catal., 6, 7393, 10.1021/acscatal.6b01878

Jiang, 2016, Nano Energy, 27, 526, 10.1016/j.nanoen.2016.07.032

Mabayoje, 2016, ACS Energy Lett., 1, 195, 10.1021/acsenergylett.6b00084

Gao, 2014, ACS Nano, 8, 3970, 10.1021/nn500880v

Safizadeh, 2015, Int. J. Hydrogen Energy, 40, 256, 10.1016/j.ijhydene.2014.10.109

Xiao, 2015, Adv. Energy Mater., 5, 1500985, 10.1002/aenm.201500985

Zeng, 2015, J. Mater. Chem. A, 3, 14942, 10.1039/C5TA02974K

Duan, 2016, ACS Nano, 10, 8738, 10.1021/acsnano.6b04252

Blakemore, 2015, Chem. Rev., 115, 12974, 10.1021/acs.chemrev.5b00122

Gersten, 1982, J. Am. Chem. Soc., 104, 4029, 10.1021/ja00378a053

Parent, 2014, ChemSusChem, 7, 2070, 10.1002/cssc.201402322

Dau, 2010, ChemCatChem, 2, 724, 10.1002/cctc.201000126

Schulze, 2016, Nat. Chem., 8, 576, 10.1038/nchem.2503

Kauffman, 2016, ACS Catal., 6, 1225, 10.1021/acscatal.5b02633

Schöfberger, 2016, Angew. Chem., Int. Ed., 55, 2350, 10.1002/anie.201508404

Ullman, 2016, J. Am. Chem. Soc., 138, 4229, 10.1021/jacs.6b00762

Qu, 2016, Nano Energy, 19, 373, 10.1016/j.nanoen.2015.11.027

Zhao, 2013, Nat. Commun., 4, 2390, 10.1038/ncomms3390

Borup, 2007, Chem. Rev., 107, 3904, 10.1021/cr050182l

Ma, 2016, Angew. Chem., Int. Ed., 55, 1138, 10.1002/anie.201509758

Li, 2014, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35

Churchill, 2014, Nat. Nanotechnol., 9, 330, 10.1038/nnano.2014.85

Jiang, 2016, Angew. Chem., Int. Ed., 55, 13849, 10.1002/anie.201607393

Seo, 2016, ACS Catal., 6, 4347, 10.1021/acscatal.6b00553

Deng, 2016, ACS Catal., 6, 2473, 10.1021/acscatal.6b00205

Chou, 2011, ChemSusChem, 4, 1566, 10.1002/cssc.201100075

Krasil'shchikov, 1963, Zh. Fiz. Khim., 37, 7

Conway, 1962, Can. J. Chem., 40, 1690, 10.1139/v62-256