Electrocardiogram signal denoising by a new noise variation estimate

Springer Science and Business Media LLC - Tập 36 Số 1 - Trang 13-20 - 2020
Regis Nunes Vargas1, Antônio Cláudio Paschoarelli Veiga1
1Federal University of Uberlândia, Electrical Engineering College, Uberlândia, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Condat L. A direct algorithm for 1-d total variation denoising. IEEE Signal Process Lett. 2013;20(11):1054–7. https://doi.org/10.1109/LSP.2013.2278339.

de Chazal P, Dwyer MO. Automatic classification of heartbeats using ecg morphology and heartbeat interval features. IEEE Trans Biomed Eng. 2004;51(7):1196–206. https://doi.org/10.1109/TBME.2004.827359.

Donoho DL, Johnstone IM. Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc. 1995;90(432):1200–24. https://doi.org/10.1080/01621459.1995.10476626.

Elhaj FA, Salim N. Arrhythmia recognition and classi_cation using combined linear and nonlinear features of ecg signals. Comput Methods Prog Biomed. 2016;127:52–63. https://doi.org/10.1016/j.cmpb.2015.12.024.

García M, Martínez-Iniesta M, Ródenas J, Rieta JJ, Alcaraz R. A novel wavelet-based filtering strategy to remove powerline interference from electrocardiograms with atrial fibrillation. Physiol Meas. 2018;39(11):115006.

Goldberger AL, Amaral LAN, Glass L, Hausdor JM, Ivanov PC, Mark RG, et al. Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation. 2003;101(23). https://doi.org/10.1161/01.cir.101.23.e215.

Han G, Xu Z. Electrocardiogram signal denoising based on a new improved wavelet thresholding. Rev Sci Instrum. 2016;87(8):084303. https://doi.org/10.1063/1.4960411.

Jain S, Bajaj V, Kumar A. Riemann liouvelle fractional integral based empirical mode decomposition for ecg denoising. IEEE J Biomed Health Inform. 2018;22(4):1133–9.

Khaing AS, Naing ZM. Quantitative investigation of digital filters in electrocardiogram with simulated noises. Int J Inf Electron Eng. 2011;1(3):210–6.

Linhares RR. Discriminating between explosions and earthquakes by the SDFA method. American Review of Mathematics and Statistics (ARMS). 2017;5(2):1–5. https://doi.org/10.15640/arms.v5n2a1.

Linhares RR. Arrhythmia detection coefficient based on wavelet shrinkage. American Review of Mathematics and Statistics (ARMS). 2018;6(2):26–9. https://doi.org/10.15640/arms.v6n2a3.

Meyer Y. Wavelets: algorithms and applications. Soc Ind Appl Math. 1993. https://doi.org/10.1137/1036136.

Mitchell M. An introduction to genetic algorithms. Cambridge: MIT Press; 1998.

Moody GB, Mark RG. The impact of the mit-bih arrhythmia database. IEEE Eng Med Biol Mag. 2001;20(3):45–50.

Moody GB, Muldrow W, Mark RG. A noise stress test for arrhythmia detectors. Comput Cardiol. 1984;11(3):381–4.

Mooney CZ. Monte carlo simulation, vol. 116. Thousand Oaks: Sage Publications; 1997.

Oliveira BR, Duarte MAQ, Abreu CCE, Vieira Filho J. A wavelet-based method for powerline interference removal in ecg signals. Res Biomed Eng. 2018;34(1):73–86.

Percival DB, Walden AT. Wavelet methods for time series analysis, vol. 4. Cambridge: Cambridge University Press; 2006.

Rakshit M, Das S. An efficient ecg denoising methodology using empirical mode decomposition and adaptive switching mean _lter. Biomed Signal Process Control. 2018;40:140–8. https://doi.org/10.1016/j.bspc.2017.09.020.