Electro-detection of the antibacterial metronidazole using zinc oxide nanoparticles formed on graphitic carbon sheets. Analytical application: Human serum and urine
Tài liệu tham khảo
Desai, 2014, Green synthesis of novel quinolone based imidazole derivatives and evaluation of their antimicrobial activity, J. Saudi Chem. Soc., 18, 963, 10.1016/j.jscs.2011.11.021
Jarrad, 2015, Metronidazole–triazole conjugates: activity against Clostridium difficile and parasites, Eur. J. Med. Chem., 101, 96, 10.1016/j.ejmech.2015.06.019
Dunn, 2007, The activity of protease inhibitors against Giardia duodenalis and metronidazole-resistant Trichomonas vaginalis, Int. J. Antimicrob. Agents, 29, 98, 10.1016/j.ijantimicag.2006.08.026
Davies, 1964, Treatment of Vincent's stomatitis with metronidazole, Br. Med. J., 5391, 1149, 10.1136/bmj.1.5391.1149
Dione, 2015, The aerobic activity of metronidazole against anaerobic bacteria, Int. J. Antimicrob. Agents, 45, 537, 10.1016/j.ijantimicag.2014.12.032
Katsandri, 2006, In vitro activities of Tigecycline against recently isolated Gram-negative anaerobic bacteria in Greece, including metronidazole-resistant strains, Diagn. Microbiol. Infect. Dis., 55, 231, 10.1016/j.diagmicrobio.2006.01.022
Scorza, 2004, Metronidazole for the treatment of feline giardiasis, J. Feline Med. Surg., 6, 157, 10.1016/j.jfms.2003.11.007
Carroll, 2013, Efficacy and safety of metronidazole for pulmonary multidrug-resistant tuberculosis, J. Antimicrob. Agents Chemother., 57, 3903, 10.1128/AAC.00753-13
Etxeberria, 2012, Metronidazole-cerebellopathy associated with peripheral neuropathy, downbeat nystagmus and bilateral ocular abduction deficit, Rev. Neurol., 168, 193, 10.1016/j.neurol.2011.04.008
McGrath, 2007, Reversible optic neuropathy due to metronidazole, Clin. Exp. Ophthalmol., 35, 585, 10.1111/j.1442-9071.2007.01537.x
Prabhakaran, 2015, Electrospraying technique for the fabrication of metronidazole contained PLGA particles and their release profile, Mater. Sci. Eng. C, 56, 66, 10.1016/j.msec.2015.06.018
BonDurant, 1997, Pathogenesis, diagnosis, and management of trichomoniasis in cattle, Veterinary Clin. North America: Food Animal Practice, 13, 345
A. Bendesky, D. Meńendez, P. Ostrosky-Wegman, Is metronidazole carcinogenic Mutation Research/Reviews in Mutation Research 511 (2002) 133–144.
Nasseh, 2019, Adsorption of metronidazole antibiotic using a new magnetic nanocomposite from simulated wastewater (isotherm, kinetic and thermodynamic studies), Compos. B Eng., 159, 146, 10.1016/j.compositesb.2018.09.034
Lanzky, 1997, The toxic effect of the antibiotic metronidazole on aquatic organisms, Chemosphere, 35, 2553, 10.1016/S0045-6535(97)00324-X
Simon A. Din gsdag, Neil Hunter. Metronidazole: an update on metabolism, structure–cytotoxicity and resistance mechanisms. J Antimicrobial Chemotherapy. Review p 1-15.
Mishra, 2014, Development of ultraviolet spectroscopic method for the estimation of metronidazole benzoate from pharmaceutical formulation, J. Nat. Sci. Biol. Med., 5, 261, 10.4103/0976-9668.136154
El-Sayed, 1997, Polarographic determination of metronidazole in pharmaceutical formulations and urine, Microchem. J., 55, 110, 10.1006/mchj.1996.1307
Tian, 2013, Simultaneous determination of metronidazole, chloramphenicol and 10 sulfonamide residues in honey by LC–MS/MS, Anal. Methods, 5, 1283, 10.1039/c2ay25998b
Ho, 2005, Determination of dimetridazole and metronidazole in poultry and porcine tissues by gas chromatography–electron capture negative ionization mass spectrometry, Anal. Chim. Acta, 530, 23, 10.1016/j.aca.2004.09.004
Maher, 2008, Simultaneous multi residue determination of metronidazole and spiramycin in fish muscle using high performance liquid chromatography with UV detection, J. Chromatogr. B, 876, 175, 10.1016/j.jchromb.2008.10.033
Li, 2014, Fabrication of multi-walled carbon nanotubes/ oxide reinforced hollow fibers by sol–gel technique for rapid determination of metronidazole in milk, Anal. Methods, 6, 1401
Svancara, 2012
Ates, 2009, Conducting polymer coated carbon surfaces and biosensor applications, Prog. Org. Coat., 66, 337, 10.1016/j.porgcoat.2009.08.014
Ghanbari, 2014, Fabrication of silver nanoparticles–polypyrrole composite modified electrode for electrocatalytic oxidation of hydrazine, Synth. Met., 195, 234, 10.1016/j.synthmet.2014.06.014
Shetti, 2019, A novel electrochemical sensor for detection of molinate using ZnO nanoparticles loaded carbon electrode, Electroanalysis, 31, 1, 10.1002/elan.201800775
Kulkarni, 2020, Development of a novel nanosensor using Ca-doped ZnO for antihistamine drug, Mater. Chem. Phys., 246, 122, 10.1016/j.matchemphys.2020.122791
Bukkitgar, 2013, Electro-sensing base for mefenamic acid on 5% barium-doped zinc oxide nanoparticles modified electrode and its analytical application, J. Royal Soc. Chem. J. Name, 1
Ardakani, 2010, Selective voltammetric determination of D-penicillamine in the presence of tryptophan at a modified carbon paste electrode incorporating TiO2 nanoparticles and quinizarine, J. Electroanal. Chem., 644, 1, 10.1016/j.jelechem.2010.02.034
Ardakani, 2008, Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum (VI) complex-TiO2 nanoparticle modified carbon paste electrode, J. Electroanal. Chem., 624, 73, 10.1016/j.jelechem.2008.07.027
Tajika, 2013, Simultaneous determination of droxidopa and carbidopa using a carbon nanotubes paste electrode, Sens. Actuators B Chem., 188, 923, 10.1016/j.snb.2013.07.085
Mao, 2015, Fabrication ofelectrochemical sensor for paracetamol based on multi-walled carbonnanotubes and chitosan–copper complex by self-assembly technique, Talanta, 144, 252, 10.1016/j.talanta.2015.06.020
Shweta J. Malode, Keerthi Prabhu K., Nagaraj P. Shetti1, Raviraj M.Kulkarni. Electroanalysis of carbendazim using MWCNT/Ca-ZnO modified electrode. Electroanalysis 10.1002/elan.2019 00776.
Shetti, 2019, A novel electrochemical sensor for detection of molinate using ZnO nanoparticles loaded carbon electrode, Electroanalysis, 31, 1, 10.1002/elan.201800775
Shikandar D. Bukkitgar, Nagaraj P. Shetti , Raviraj M. Kulkarni , Mrityunjay R. Doddamani. Electro-oxidation of nimesulide at 5% barium-doped zinc oxide nanoparticle modi fi ed glassy carbon electrode. Journal of Electroanalytical Chemistry 762 (2016) 37 –42.
Davalasab Ilager, Nagaraj P. Shetti, Ramesh S. Malladi,Nitinkumar S. Shetty, Kakarla Raghava Reddy, Tejraj M. Aminabhavi. Synthesis of Ca-doped ZnO nanoparticles and its application as highly efficient electrochemical sensor for the determination of anti-viral drug, acyclovir. Journal of Molecular Liquids. S0167-7322(2020)35557-4.
Zhang, 2015, J. Mater. Sci.: Mater. Electron, 26, 2861
Zhang, 2015, Ind. Eng. Chem. Res, 54, 1766, 10.1021/ie504444w
Khorsand Zak, 2011, J. Int. Nanomed., 6, 1399, 10.2147/IJN.S19693
N.P. Shetti, M.M. Shanbhag, S.J. Malode, R.K. Srivastava, K.R. Reddy, Amberlite XAD-4 modifid electrodes for highly sensitive electrochemical determination of nimesulide in human urine, Microchem. J. 153 (2020) 104389.
Laviron, 1979, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem., 101, 19, 10.1016/S0022-0728(79)80075-3
Palanisamy, 2017, Voltammetric determination of Sudan I in food samples based on platinumnanoparticles decorated on graphene-b-cyclodextrin modified electrode, J. Electroanal. Chem., 794, 64, 10.1016/j.jelechem.2017.03.041
Lü, 2004, Electrochemical reduction and voltammetric determination of metronidazole at a nanomaterial thin film coated glassy carbon electrode, Talanta, 63, 653, 10.1016/j.talanta.2003.12.005
Peng, 2012, Determination of metronidazole inpharmaceutical dosage forms based on reduction at graphene and ionic liquidcomposite film modified electrode, Sensor. Actuator. B, 169, 81, 10.1016/j.snb.2012.03.040
J.C. Miller, J.N. Miller, Basic statistical methods for analytical chemistry. Part I. Statistics of repeated measurements. A review Analyst, 113(1988)1351-1356.
Gu, 2015, Multi-shelled hollow micro-/nanostructures, Electrochim. Acta, 152, 108, 10.1016/j.electacta.2014.11.097
Nejati, 2014, Electrochemical synthesis of nickel–iron layered double hydroxide: application as a novel modified electrode in electrocatalytic reduction of metronidazole, Mater. Sci. Eng. C, 35, 179, 10.1016/j.msec.2013.11.003
Li, 2014, Simultaneous determination of ranitidine and metronidazole in pharmaceutical formulations at poly(chromotrope 2B) modified activated glassy carbon electrodes, J. Food Drug anal., 22, 345, 10.1016/j.jfda.2013.09.050
Ammar, 2016, Boron doped diamond sensor for selective determination of metronidazole: mechanistic and analytical study by cyclic voltammetry and square wave voltammetry, Mater. Sci. Eng. C, 59, 604, 10.1016/j.msec.2015.10.025
Bartletta, 2005, Voltammetry and determination of metronidazole at a carbon fiber microdisk electrode, Talanta, 66, 869, 10.1016/j.talanta.2004.12.048
S. A. ¨ Ozkan, Y. ¨ Ozkan, and Z. S¸ent¨urk, “Electrochemical reduction of metronidazole at activated glassy carbon electrode and its determination in pharmaceutical dosage forms,” Journal of Pharmaceutical and Biomedical Analysis, vol. 17(1998) pp. 299–305,.
Chen, 2013, A core–shell molecularly imprinted polymer grafted onto a magnetic glassy carbon electrode as a selective sensor for the determination of metronidazole, Sensor Actuat. B, 183, 594, 10.1016/j.snb.2013.04.050
Rezaei, 2010, Fabrication of a nanostructure thin film on the gold electrode using continuous pulsed-potential technique and its application for the electrocatalytic determination of metronidazole, Electrochim. Acta, 55, 1801, 10.1016/j.electacta.2009.10.070
Yao, 1998, Study on the voltammetric behavior of metronidazole and its determination at a Co/GC modified electrode, J. Analy. Lett., 429
