Electro-concentration of urine designed for separation of sodium from nitrogen

Separation and Purification Technology - Tập 276 - Trang 119275 - 2021
Johannes Jermakka1,2, Emma Thompson Brewster3, Stefano Freguia4, Pablo Ledezma2, Marika Kokko1
1Faculty of Engineering and Natural Sciences, Tampere University, Finland. Permanent address: Tampere University, Faculty of Engineering and Natural Sciences, PO Box 541, 33101 Tampere, Finland
2Advanced Water Management Centre, The University of Queensland, Brisbane, Australia
3Faculty of Environment, Science and Engineering, Southern Cross University, Lismore, Australia
4Department of Chemical Engineering, The University of Melbourne, Parkville, Australia

Tài liệu tham khảo

Rockström, 2009, Planetary boundaries: Exploring the safe operating space for humanity, Ecol. Soc., 14, 10.5751/ES-03180-140232 Larsen, 2013 Capodaglio, 2016, New paradigms in urban water management for conservation and sustainability, Water Pract. Technol., 11, 176, 10.2166/wpt.2016.022 Daneshgar, 2019, Economic and energetic assessment of different phosphorus recovery options from aerobic sludge, J. Clean. Prod., 223, 729, 10.1016/j.jclepro.2019.03.195 Larsen, 2009, Source separation: Will we see a paradigm shift in wastewater handling?, Environ. Sci. Technol., 43, 6121, 10.1021/es803001r M. Johansson, H. Jönsson, C. Höglund, A. Richert Stintzing, L. Rodhe, Final Report for Source-Separated Human Urine: A Future Source of Fertilizer for Agriculture in the Stockholm Region, Stockholm Vatten, Stockholmshem & HSB National Federation, Stockholm, Sweden, 2001. Friedler, 2013, Wastewater composition, 241 Capodaglio, 2017, Sustainability of decentralized wastewater treatment technologies, Water Pract. Technol., 12, 463, 10.2166/wpt.2017.055 Freguia, 2019, Self-powered bioelectrochemical nutrient recovery for fertilizer generation from human urine, Sustain., 11, 1 Alemayehu, 2020, Nutrient recovery options from human urine: A choice for large scale application, Sustain. Prod. Consum., 24, 219, 10.1016/j.spc.2020.06.016 Udert, 2012, Complete nutrient recovery from source-separated urine by nitrification and distillation, Water Res., 46, 453, 10.1016/j.watres.2011.11.020 Wilsenach, 2007, Phosphate and potassium recovery from source separated urine through struvite precipitation, Water Res., 41, 458, 10.1016/j.watres.2006.10.014 Ishii, 2015, Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: Focus on urine nutrient management, Water Res., 79, 88, 10.1016/j.watres.2015.04.010 A. Richert, R. Gensch, H. Jönsson, T.-A. Stenström, L. Dagerskog, Practical Guidance on the Use of Urine in Crop Production, 2010. Mukhopadhyay, 2021, Soil salinity under climate change: Challenges for sustainable agriculture and food security, J. Environ. Manage., 280, 10.1016/j.jenvman.2020.111736 Litalien, 2020, Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation, Sci. Total Environ., 698, 10.1016/j.scitotenv.2019.134235 Daliakopoulos, 2016, The threat of soil salinity: A European scale review, Sci. Total Environ., 573, 727, 10.1016/j.scitotenv.2016.08.177 Boh, 2014, Effect of NaCl-Induced Salinity and Human Urine Fertilization on Substrate Chemical Properties, Open J. Soil Sci., 04, 16, 10.4236/ojss.2014.41003 P. Ledezma, J. Jermakka, J. Keller, S. Freguia, Recovering Nitrogen as a Solid without Chemical Dosing: Bio-Electroconcentration for Recovery of Nutrients from Urine, Environ. Sci. Technol. Lett. 4 (2017) acs.estlett.7b00024. https://doi.org/10.1021/acs.estlett.7b00024. Jermakka, 2018, Electro-concentration for chemical-free nitrogen capture as solid ammonium bicarbonate, Sep. Purif. Technol., 203, 48, 10.1016/j.seppur.2018.04.023 Thompson Brewster, 2017, Modelling recovery of ammonium from urine by electro-concentration in a 3-chamber cell, Water Res., 124, 10.1016/j.watres.2017.07.043 M. Yasukawa, T. Suzuki, M. Higa, Salinity gradient processes: Thermodynamics, applications, and future prospects, Elsevier B.V., 2018. https://doi.org/10.1016/B978-0-444-63961-5.00001-8. Stumm, 1996, Aquatic chemistry: chemical equilibria and rates in natural waters, Choice Rev, Online., 33, 33 Jermakka, 2021, Electrochemical system for selective oxidation of organics over ammonia in urine, Environ. Sci. Water Res. Technol., 7, 942, 10.1039/D0EW01057J Martínez-Huitle, 2015, Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review, Chem. Rev., 115, 13362, 10.1021/acs.chemrev.5b00361 Ganiyu, 2019, Nature, Mechanisms and Reactivity of Electrogenerated Reactive Species at Thin-Film Boron-Doped Diamond (BDD) Electrodes During Electrochemical Wastewater Treatment, Wiley-VCH Verlag Zöllig, 2017, Removal rates and energy demand of the electrochemical oxidation of ammonia and organic substances in real stored urine, Environ. Sci. Water Res. Technol., 3, 480, 10.1039/C7EW00014F Jafvert, 2002, Reaction scheme for the chlorination of ammoniacal water, Environ. Sci. & Technol., 26, 577, 10.1021/es00027a022 Rudolf, 1995, Cathodic reduction of hypochlorite during reduction of dilute sodium chloride solution, J. Appl. Electrochem., 25, 155, 10.1007/BF00248173 Girenko, 2018, Selection of the Optimal Cathode Material to Synthesize Medical Sodium Hypochlorite Solutions in a Membraneless Electrolyzer, Surf. Eng. Appl. Electrochem., 54, 88, 10.3103/S1068375518010052 S.Y. Bashtan, V. V. Goncharuk, R.D. Chebotareva, V.N. Belyakov, V.M. Linkov, Production of sodium hypochlorite in an electrolyser equipped with a ceramic membrane, in: Desalination, Elsevier Science Publishers B.V., 1999: pp. 77–82. https://doi.org/10.1016/S0011-9164(99)00156-3. Einaga, 2010, Diamond electrodes for electrochemical analysis, J. Appl. Electrochem., 40, 1807, 10.1007/s10800-010-0112-z Randtke, 2010, Chemistry of Aqueous Chlorine, White’s Handb, Chlorination Altern. Disinfect. Fifth Ed., 2, 68 Kobylinski, 2010, Chlorination of Wastewater, White’s Handb, Chlorination Altern. Disinfect. Fifth Ed., 326 Romano, 2020, Optimized energy consumption in electrochemical-based regeneration of RAS water, Sep. Purif. Technol., 240, 10.1016/j.seppur.2020.116638 Jasper, 2017, Toxic Byproduct Formation during Electrochemical Treatment of Latrine Wastewater, Environ. Sci. Technol., 51, 7111, 10.1021/acs.est.7b01002 Cho, 2014, Electrochemical treatment of human waste coupled with molecular hydrogen production, RSC Adv., 4, 4596, 10.1039/C3RA46699J Yang, 2019, Membrane-separated electrochemical latrine wastewater treatment, Environ. Sci. Water Res. Technol., 5, 51, 10.1039/C8EW00698A Garcia-Segura, 2018, Electrochemical oxidation remediation of real wastewater effluents — A review, Process Saf. Environ. Prot., 113, 48, 10.1016/j.psep.2017.09.014 Radjenovic, 2015, Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water, Environ. Sci. Technol., 49, 11292, 10.1021/acs.est.5b02414 A.J. Faulkner, L.R. Bard, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, 2008. https://www.wiley.com/en-ir/Electrochemical+Methods:+Fundamentals+and+Applications,+2nd+Edition-p-9780471043720 (accessed February 16, 2021). Zumdahl DeCoste, 2012, Chem. Principles W.M. Haynes, CRC Handbook of Chemistry and Physics. 92nd Edition, Greece, 2012. Card, 2015, Organic Fertilizers Etter, 2016, VUNA Handbook on Urine Treatment, 22 Ren, 2021, A Bioinspired Molybdenum Catalyst for Aqueous Perchlorate Reduction, J. Am. Chem. Soc., 143, 7891, 10.1021/jacs.1c00595 Freguia, 2021, Sustainable engineering of sewers and sewage treatment plants for scenarios with urine diversion, J. Hazard. Mater., 415, 10.1016/j.jhazmat.2021.125609 Badeti, 2021, Impact of source-separation of urine on effluent quality, energy consumption and greenhouse gas emissions of a decentralized wastewater treatment plant, Process Saf. Environ. Prot., 150, 298, 10.1016/j.psep.2021.04.022