Tiền điều trị bằng điện châm tại huyệt Zusanli (ST36) làm giảm tình trạng viêm do lipopolysaccharide gây ra ở chuột nhờ ức chế sự xâm nhập của Ca2+ liên quan đến thụ thể cannabinoid CB2

Inflammation - Tập 42 - Trang 211-220 - 2018
Tao Chen1, Yong Xiong2, Man Long3, Dan Zheng1, Hui Ke1, Jun Xie2, Nina Yin1, Zebin Chen4
1Department of Anatomy, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
2College of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
3School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
4Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China

Tóm tắt

Trong nghiên cứu này, chúng tôi nhằm điều tra ảnh hưởng của việc tiền điều trị bằng điện châm (EA) tại huyệt Zusanli (ST36) đối với mô hình chuột gây độc tố nội sinh do lipopolysaccharide (LPS) và khám phá các cơ chế phân tử tiềm tàng. Chuột được điều trị bằng EA tại ST36 trong 7 ngày trước khi tiếp xúc với LPS. Hai giờ sau khi tiêm LPS, các mẫu như huyết thanh, mô huyệt địa phương và lách được thu thập và xử lý để điều tra bao gồm sản xuất cytokine, nồng độ canxi cytosol (Ca2+), sự xâm nhập Ca2+, biểu hiện thụ thể CB2 (CB2R) và tín hiệu TLR4/NF-κB. Kết quả của chúng tôi cho thấy tiền điều trị bằng EA đã làm giảm đáng kể sản xuất cytokine viêm do LPS gây ra, như TNF-α, IL-1β, và IL-6. EA cũng tăng cường biểu hiện CB2R, ức chế sự xâm nhập Ca2+ và vô hiệu hóa tín hiệu TLR4/NF-κB, dẫn đến giảm đáng kể nồng độ Ca2+. Quan trọng là, đối kháng CB2R AM630 đã loại bỏ hiệu ứng ức chế của EA tại ST36 đối với chuột nhiễm độc tố nội sinh, cho thấy CB2R có liên quan đến hiệu ứng chống viêm của EA. Tiền điều trị bằng EA có thể tăng cường biểu hiện CB2R, ức chế sự xâm nhập Ca2+ và vô hiệu hóa tín hiệu TLR4/NF-κB, điều này góp phần làm giảm tình trạng viêm do LPS gây ra ở chuột.

Từ khóa

#điện châm #huyệt Zusanli #lipopolysaccharide #viêm #thụ thể cannabinoid CB2

Tài liệu tham khảo

Tracey, K.J. 2002. The inflammatory reflex. Nature 420: 853–859. Schett, G., D. Elewaut, I.B. McInnes, J.M. Dayer, and M.F. Neurath. 2013. How cytokine networks fuel inflammation: toward a cytokine-based disease taxonomy. Nature Medicine 19: 822–824. Headland, S.E., and L.V. Norling. 2015. The resolution of inflammation: principles and challenges. Seminars in Immunology 27: 149–160. Raetz, C.R., and C. Whitfield. 2002. Lipopolysaccharide endotoxins. Annual Review of Biochemistry 71: 635–700. Płóciennikowska, A., A. Hromada-Judycka, K. Borzęcka, and K. Kwiatkowska. 2015. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cellular and Molecular Life Sciences 72: 557–581. Opal, S.M. 2010. Endotoxins and other sepsis triggers. Contributions to Nephrology 167: 14–24. Xue, X., Y. You, J. Tao, X. Ye, J. Huang, S. Yang, Z. Lin, Z. Hong, J. Peng, and L. Chen. 2014. Electro-acupuncture at points of zusanli and quchi exerts anti-apoptotic effect through the modulation of PI3K/Akt signaling pathway. Neuroscience Letters 558: 14–19. Lu, Y., H. Zhao, Y. Wang, B. Han, T. Wang, H. Zhao, K. Cui, and S. Wang. 2015. Electro-acupuncture up-regulates astrocytic MCT1 expression to improve neurological deficit in middle cerebral artery occlusion rats. Life Sciences 134: 68–72. Youn, J.I., K.K. Sung, B.K. Song, M. Kim, and S. Lee. 2013. Effects of electro-acupuncture therapy on post-stroke depression in patients with different degrees of motor function impairments: a pilot study. Journal of Physical Therapy Science 25: 725–728. Fukazawa, Y., T. Maeda, and S. Kishioka. 2009. The pharmacological mechanisms of electroacupuncture. Current Opinion in Investigational Drugs 10: 62–69. Wang, Z., T. Chen, M. Long, L. Chen, L. Wang, N. Yin, and Z. Chen. 2017. Electro-acupuncture at acupoint ST36 ameliorates inflammation and regulates Th1/Th2 balance in delayed-type hypersensitivity. Inflammation 40: 422–434. Wang, Z., T. Yi, M. Long, Y. Gao, C. Cao, C. Huang, Q. Wang, N. Yin, and Z. Chen. 2017. Electro-acupuncture at zusanli acupoint (ST36) suppresses inflammation in allergic contact dermatitis via triggering local IL-10 production and inhibiting p38 MAPK activation. Inflammation 40: 1351–1364. Liu, H.W., M.C. Liu, C.M. Tsao, M.H. Liao, and C.C. Wu. 2011. Electro-acupuncture at ‘Neiguan’ (PC6) attenuates liver injury in endotoxaemic rats. Acupuncture in Medicine 29: 284–288. Zhang, Y., J.B. Yu, X.Q. Luo, L.R. Gong, M. Wang, X.S. Cao, S.A. Dong, Y.M. Yan, Y. Kwon, and J. He. 2014. Effect of ERK1/2 signaling pathway in electro-acupuncture mediated up-regulation of heme oxygenase-1 in lungs of rabbits with endotoxic shock. Medical Science Monitor 20: 1452–1460. Liu, Z., X. Chen, Y. Gao, S. Sun, L. Yang, Q. Yang, F. Bai, L. Xiong, and Q. Wang. 2015. Involvement of GluR2 up-regulation in neuroprotection by electroacupuncture pretreatment via cannabinoid CB1 receptor in mice. Scientific Reports 5: 9490. Schmittgen, T.D., and K.J. Livak. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols 3: 1101–1108. Yin, N., X. Hong, Y. Han, Y. Duan, Y. Zhang, and Z. Chen. 2015. Cortex Mori Radicis extract induces neurite outgrowth in PC12 cells activating ERK signaling pathway via inhibiting Ca(2+) influx. International Journal of Clinical and Experimental Medicine 8: 5022–5032. Schappe, M.S., K. Szteyn, M.E. Stremska, S.K. Mendu, T.K. Downs, P.V. Seegren, M.A. Mahoney, S. Dixit, J.K. Krupa, E.J. Stipes, J.S. Rogers, S.E. Adamson, N. Leitinger, and B.N. Desai. 2018. Chanzyme TRPM7 mediates the Ca2+ influx essential for lipopolysaccharide-induced Toll-like receptor 4 endocytosis and macrophage activation. Immunity 48: 59–74.e5. Zhang, Y., Y. Lu, L. Ma, X. Cao, J. Xiao, J. Chen, S. Jiao, Y. Gao, C. Liu, Z. Duan, D. Li, Y. He, B. Wei, and H. Wang. 2014. Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-κB signaling and protects against endotoxin shock. Immunity 40: 501–514. Olmos, G., and J. Lladó. 2014. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators of Inflammation 2014: 861231. Song, Q., S. Hu, H. Wang, Y. Lv, X. Shi, Z. Sheng, and W. Sheng. 2014. Electroacupuncturing at zusanli point (ST36) attenuates pro-inflammatory cytokine release and organ dysfunction by activating cholinergic anti-inflammatory pathway in rat with endotoxin challenge. African Journal of Traditional, Complementary, and Alternative Medicines 11: 469–474. Yu, J.B., S.A. Dong, X.Q. Luo, L.R. Gong, Y. Zhang, M. Wang, X.S. Cao, and D.Q. Liu. 2013. Role of HO-1 in protective effect of electro-acupuncture against endotoxin shock-induced acute lung injury in rabbits. Experimental Biology and Medicine (Maywood, N.J.) 238: 705–712. Park, J.Y., and U. Namgung. 2018. Electroacupuncture therapy in inflammation regulation: current perspectives. Journal of Inflammation Research 11: 227–237. Jung, T.G., J.H. Lee, I.S. Lee, and B.T. Choi. 2010. Involvement of intracellular calcium on the phosphorylation of spinal N-methyl-d-aspartate receptor following electroacupuncture stimulation in rats. Acta Histochemica 112: 127–132. Gao, J., Y. Zhao, Y. Wang, J. Xin, J. Cui, S. Ma, F. Lu, L. Qin, and X. Yu. 2015. Anti-arrhythmic effect of acupuncture pretreatment in the rats subjected to simulative global ischemia and reperfusion—involvement of intracellular Ca2+ and connexin 43. BMC Complementary and Alternative Medicine 15: 5. Chen, L., A. Xu, N. Yin, M. Zhao, Z. Wang, T. Chen, Y. Gao, and Z. Chen. 2017. Enhancement of immune cytokines and splenic CD4+ T cells by electroacupuncture at ST36 acupoint of SD rats. PLoS One 12: e0175568. Mittal, M., C. Tiruppathi, S. Nepal, Y.Y. Zhao, D. Grzych, D. Soni, D.J. Prockop, and A.B. Malik. 2016. TNFα-stimulated gene-6 (TSG6) activates macrophage phenotype transition to prevent inflammatory lung injury. Proceedings of the National Academy of Sciences of the United States of America 113: E8151–E8158. Zhou, X., W. Yang, and J. Li. 2006. Ca2+- and protein kinase C-dependent signaling pathway for nuclear factor-kappaB activation, inducible nitric-oxide synthase expression, and tumor necrosis factor-alpha production in lipopolysaccharide-stimulated rat peritoneal macrophages. The Journal of Biological Chemistry 281: 31337–31347. Toczek, M., and B. Malinowska. 2018. Enhanced endocannabinoid tone as a potential target of pharmacotherapy. Life Sciences 204: 20–45. Chen, L., J. Zhang, F. Li, Y. Qiu, L. Wang, Y.H. Li, J. Shi, H.L. Pan, and M. Li. 2009. Endogenous anandamide and cannabinoid receptor-2 contribute to electroacupuncture analgesia in rats. The Journal of Pain 10: 732–739. Zhang, J., L. Chen, T. Su, F. Cao, X. Meng, L. Pei, J. Shi, H.L. Pan, and M. Li. 2010. Electroacupuncture increases CB2 receptor expression on keratinocytes and infiltrating inflammatory cells in inflamed skin tissues of rats. The Journal of Pain 11: 1250–1258. Gao, F., H.C. Xiang, H.P. Li, M. Jia, X.L. Pan, H.L. Pan, and M. Li. 2018. Electroacupuncture inhibits NLRP3 inflammasome activation through CB2 receptors in inflammatory pain. Brain, Behavior, and Immunity 67: 91–100. Su, T.F., Y.Q. Zhao, L.H. Zhang, M. Peng, C.H. Wu, L. Pei, B. Tian, J. Zhang, J. Shi, H.L. Pan, and M. Li. 2012. Electroacupuncture reduces the expression of proinflammatory cytokines in inflamed skin tissues through activation of cannabinoid CB2 receptors. European Journal of Pain 16: 624–635.