Electrification of amine-based CO2 capture utilizing heat pumps

Carbon Capture Science & Technology - Tập 10 - Trang 100154 - 2024
Ebbe Hauge Jensen1,2, Anders Andreasen2, Jens Kristian Jørsboe1, Martin Pihl Andersen1, Martin Hostrup2, Brian Elmegaard1, Christian Riber2, Philip Loldrup Fosbøl1
1Technical University of Denmark, 2800 Kongens, Lyngby, Denmark
2Rambøll Danmark, København S 2300, Denmark

Tài liệu tham khảo

Alabdulkarem, 2015, Multi-functional heat pumps integration in power plants for CO2 capture and sequestration, Appl. Energy, 147, 258, 10.1016/j.apenergy.2015.03.003 Ali, 2019, Cost estimation of CO2 absorption plants for CO2 mitigation – method and assumptions, Int. J. Greenh. Gas Control, 88, 10, 10.1016/j.ijggc.2019.05.028 Andreasen, 2021, Optimisation of carbon capture from flue gas from a Waste-to-Energy plant using surrogate modelling and global optimisation, Oil Gas Sci. Technol., 76, 10.2516/ogst/2021036 Angelidaki, 2019 Aromada, S.A., Eldrup, N.H., Normann, F., Øi, L.E. “Techno-economic assessment of different heat exchangers for CO2 capture,” 2020. Aromada, 2021, Capital cost estimation of CO2 capture plant using Enhanced Detailed Factor (EDF) method: Installation factors and plant construction characteristic factors, Int. J. Greenh. Gas Control, 110 Aromada, 2022, Cost and emissions reduction in CO2 capture plant dependent on heat exchanger type and different process configurations: optimum temperature approach analysis, Energies, 15, 10.3390/en15020425 Arpagaus, 2018, High temperature heat pumps: market overview, state of the art, research status, refrigerants, and application potentials, Energy, 152, 985, 10.1016/j.energy.2018.03.166 Carranza-Abaid, 2021, Analysis and selection of optimal solvent-based technologies for biogas upgrading, Fuel, 303 Cousins, 2011, A survey of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption, Int. J. Greenh. Gas Control, 5, 605, 10.1016/j.ijggc.2011.01.002 Danish Energy Agenncy (Energistyrelsen), “Danish energy agency. Socio-economic analysis method (Samfundsøkonomiske beregningsforudsætninger for energipriser og emissioner), oktober 2019,” 2019. [Online]. Available: https://ens.dk/service/fremskrivninger-analyser-modeller/samfundsoekonomiske-analysemetoder Dyment, 2015, 2 Eggemann, 2023, The ecological potential of manure utilisation in small-scale biogas plants, Appl. Energy, 331 Energinet, “Ny rekord for biogas i gassystemet i 2021,” 2022. https://energinet.dk/Om-nyheder/Nyheder/2022/01/07/Ny-rekord-for-biogas-i-gassystemet-i-2021/(accessed Sep. 26, 2022). Energistyrelsen, “Analyseforudsætninger til Energinet 2021,” pp. 1–21, 2021. Gong, 2018, Methane recovery in a combined amine absorption and gas steam boiler as a self-provided system for biogas upgrading, Energy, 157, 744, 10.1016/j.energy.2018.06.004 Hansen, A.M., Hernø, T., “Potentiale for optimering af biogasopgradering,” 2020. Hansen, A.M. “Status på bionaturgas i Danmark,” 2020. Higgins, S.J., Liu, Y.A., “CO 2 capture modeling, energy savings, and heat pump integration,” 2015, doi:10.1021/ie504617w. Hiloidhari, M., Kumari, S. Biogas upgrading and life cycle assessment of different biogas upgrading technologies. INC, 2021. doi:10.1016/B978-0-12-822808-1.00015-5. Husebye, 2012, Techno economic evaluation of amine based CO2 capture: impact of CO2 concentration and steam supply, Energy Procedia, 23, 381, 10.1016/j.egypro.2012.06.053 2020, ‘Outlook for biogas and biomethane. Prospects for organic growth, IEA Publ., 1 International Energy Agency, “Total primary energy supply by fuel, 1971 and 2019,” 2022. https://www.iea.org/data-and-statistics/charts/total-primary-energy-supply-by-fuel-1971-and-2019 (accessed Oct. 12, 2022). Jørsboe, J.K., et al., “Mobile pilot plant for CO 2 capture in biogas upgrading using 30 wt % MEA,” vol. 350, no. May, pp. 24–26, 2023, doi: 10.1016/j.fuel.2023.128702. Jeong, 2015, Techno-economic analysis of mechanical vapor recompression for process integration of post-combustion CO2 capture with downstream compression, Chem. Eng. Res. Des., 104, 247, 10.1016/j.cherd.2015.08.016 Kapoor, 2019, Evaluation of biogas upgrading technologies and future perspectives : a review, Environ. Sci. Pollut. Res., 10.1007/s11356-019-04767-1 Khan, 2020, Energy minimization in piperazine promoted mdea-based co2 capture process, Sustainability, 12, 1, 10.3390/su12208524 Klein, 2023, F-Chart software, EES Eng. Equ. Solver Koonaphapdeelert, S., Aggarangsi, P., Moran, J. Biomethane production and applications. 2020. [Online]. Available: http://www.springer.com/series/8059 Le Moullec, 2011, Screening of flowsheet modifications for an efficient monoethanolamine (MEA) based post-combustion CO2 capture, Int. J. Greenh. Gas Control, 5, 727, 10.1016/j.ijggc.2011.03.004 Le Moullec, 2013, Vacuum regeneration of amine solvent for post-combustion carbon capture with compression train integration, Energy Procedia, 37, 1814, 10.1016/j.egypro.2013.06.059 Luo, 2023, Energy, exergy and economic analysis of an integrated ground source heat pump and anaerobic digestion system for Co-generation of heating, cooling and biogas, Energy, 282 Minutillo, 2020, Green hydrogen production plants via biogas steam and autothermal reforming processes: energy and exergy analyses, Appl. Energy, 277 Mostafavi, 2021, Assessment of process modifications for amine-based post-combustion carbon capture processes, Clean. Eng. Technol., 4 Ouderji, 2023, Integration of anaerobic digestion with heat Pump: Machine learning-based technical and environmental assessment, Bioresour. Technol., 369 Peng, D., Robinson, D.B., Peng, D., Robinson, D.B. “A new two-constant equation of state a new two-constant equation of state,” vol. 15, no. 1, pp. 59–64, 1976. Sanchez Fernandez, 2012, Optimisation of lean vapour compression (LVC) as an option for post-combustion CO2 capture: Net present value maximisation, Int. J. Greenh. Gas Control, 11, 114, 10.1016/j.ijggc.2012.09.007 Sanpasertparnich, 2011, CO2 absorption in an absorber column with a series of intercooler circuits, Energy Procedia, 4, 1676, 10.1016/j.egypro.2011.02.040 Shirdel, 2022, Sensitivity analysis and cost estimation of a CO2 capture plant in aspen HYSYS, ChemEngineering, 6, 10.3390/chemengineering6020028 Song, C., Liu, Q., Ji, N., Deng, S., Zhao, J., Kitamura, Y., “Natural gas purification by heat pump assisted MEA absorption process,” vol. 204, pp. 353–361, 2017, doi:10.1016/j.apenergy.2017.07.052. Struk, M., Kushkevych, I., Vı, M. “Biogas upgrading methods : recent advancements and emerging technologies,” vol. 9, pp. 651–671, 2020, doi:10.1007/s11157-020-09539-9. Wang, 2020, Improving high-pressure water scrubbing through process integration and solvent selection for biogas upgrading, Appl. Energy, 276 Wang, 2022, Integrating biogas in regional energy systems to achieve near-zero carbon emissions, Appl. Energy, 322 Warudkar, 2013, Influence of stripper operating parameters on the performance of amine absorption systems for post-combustion carbon capture: Part I. High pressure strippers, Int. J. Greenh. Gas Control, 16, 342, 10.1016/j.ijggc.2013.01.050 Xue, 2017, A comparative study of MEA and DEA for post-combustion CO2 capture with different process configurations, Int. J. Coal Sci. Technol., 4, 15, 10.1007/s40789-016-0149-7 Zühlsdorf, B. “ANNEX 58 ABOUT HTHP Task 1: Technologies – State of the art and ongoing developments for systems and components,” 2022. https://heatpumpingtechnologies.org/annex58/task1/#%7D (accessed May 26, 2023). Zhang, 2011, Thermodynamic modeling for CO2 absorption in aqueous MEA solution with electrolyte NRTL model, Fluid Phase Equilib., 311, 67, 10.1016/j.fluid.2011.08.025 Zhang, X., Yan, J., Li, H., Chekani, S., Liu, L. “Energy saving for biogas production and upgrading - thermal integration,” vol. 61, pp. 121–125, 2014, doi:10.1016/j.egypro.2014.11.921. Zhang, 2015, Investigation of thermal integration between biogas production and upgrading, Energy Convers. Manag., 102, 131, 10.1016/j.enconman.2015.03.023