Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions

Nature Nanotechnology - Tập 9 Số 4 - Trang 268-272 - 2014
Jason Ross1, Philip Klement2,3, Aaron M. Jones4, N. Ghimire5, Jiaqiang Yan5, David Mandrus5, Takashi Taniguchi6, Kenji Watanabe6, Kenji Kitamura6, Wang Yao7, David Cobden2, Xiaodong Xu8,2
1Dept. of Materials Science and Engineering University of Washington, Seattle, USA
2Department of Physics, Justus Liebig University, Giessen, Germany
3Department of Physics, University of Washington, Seattle, USA
4Dept. of Physics, University of Washington, Seattle, USA
5Materials Science and Technology Division, Oak Ridge
6Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan
7Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, China
8Department of Materials Science and Engineering, University of Washington, Seattle, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chen, J. et al. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310, 1171–1174 (2005).

Marty, L. et al. Exciton formation and annihilation during 1D impact excitation of carbon nanotubes. Phys. Rev. Lett. 96, 136803 (2006).

Mann, D. et al. Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nature Nanotech. 2, 33–38 (2007).

Kioseoglou, G. et al. Intershell exchange and sequential electrically injected spin populations of InAs quantum-dot shell states. Phys. Rev. Lett. 101, 227203 (2008).

Xia, F., Steiner, M., Lin, Y. & Avouris, P. A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths. Nature Nanotech. 3, 609–613 (2008).

Essig, S. et al. Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene. Nano Lett. 10, 1589–1594 (2010).

Mueller, T. et al. Efficient narrow-band light emission from a single carbon nanotube p–n diode. Nature Nanotech. 5, 27–31 (2010).

Shambat, G. et al. Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode. Nature Commun. 2, 539 (2011).

Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 2–5 (2010).

Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

Feng, J., Qian, X., Huang, C-W. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nature Photon. 6, 866–872 (2012).

Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

Xiao, D., Liu, G-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 1–5 (2012).

Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotech. 8, 634–638 (2013).

Sundaram, R. S. et al. Electroluminescence in single layer MoS2 . Nano Lett. 13, 1416–1421 (2013).

Ye, Y. et al. Exciton-related electroluminescence from monolayer MoS2 . Preprint at http://lanl.arXiv.org/abs/1305.4235 (2013).

Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nature Mater. 12, 207–211 (2013).

Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Commun. 4, 1474 (2013).

Zhu, Z. Y., Cheng, Y. C. & Schwingenschlögl, U. Giant spin–orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).

Yuan, H. et al. Zeeman-type spin splitting controlled by an electric field. Nature Phys. 9, 563–569 (2013).

Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2013).

Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012).

Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nature Nanotech. 8, 1–5 (2013).

Huang, J-K. et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8, 923–930 (2014).

Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2 . Appl. Phys. Lett. 99, 102109 (2011).

Shi, H. et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7, 1072–1080 (2013).

Lagarde, D. et al. Carrier and polarization dynamics in monolayer MoS2 . Phy. Rev. Lett. 112, 047401 (2014).

Sim, S. et al. Exciton dynamics in atomically thin MoS2: interexcitonic interaction and broadening kinetics. Phys. Rev. B 88, 075434 (2013).

Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2014.14 (2014).

Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2014.25 (2014).