Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2

Nature Physics - Tập 14 Số 9 - Trang 900-906 - 2018
Su Xu1, Qiong Ma1, Huitao Shen1, Valla Fatemi1, Sanfeng Wu1, Tay‐Rong Chang2, Guoqing Chang3, Andrés M. Mier Valdivia1, Ching Kit Chan4, Quinn Gibson5, Jiadong Zhou6, Zheng Liu6, Kenji Watanabe7, Takashi Taniguchi7, Hsin Lin3, R. J. Cava5, Liang Fu1, Nuh Gedik1, Pablo Jarillo‐Herrero1
1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
2Department of Physics, National Cheng Kung University, Tainan, Taiwan
3Institute of Physics, Academia Sinica, Taipei, Taiwan
4Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA, USA
5Department of Chemistry, Princeton University, Princeton, NJ, USA
6Centre for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
7National Institute for Materials Science, Tsukuba, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

Zheng, F. et al. On the quantum spin Hall gap of monolayer 1T′–WTe2. Adv. Mater. 28, 4845–4851 (2016).

Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. 13, 683–687 (2017).

Jia, Z.-Y. et al. Direct visualization of a two-dimensional topological insulator in the single-layer 1T′-WTe2. Phys. Rev. B 96, 041108 (2017).

Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

Wu, S. et al. Observation of Topological Insulating and Superconducting Ground States of Monolayer WTe2. Bull. Am. Phys. Soc. https://meetings.aps.org/Meeting/MAR18/Session/B37.4 (2018).

MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2 ferromagnet bilayers. Nat. Phys. 13, 300–305 (2016).

Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

Moore, J. E. & Orenstein, J. Confinement-induced Berry phase and helicity-dependent photocurrents. Phys. Rev. Lett. 105, 026805 (2010).

Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

Yoda, T., Yokoyama, T. & Murakami, S. Orbital Edelstein effect as a condensed-matter analog of solenoid. Nano Lett. 18, 916–920 (2018).

Basov, D., Fogler, M. & de Abajo, F. G. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).

Rikken, G. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospin in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

Son, D. & Spivak, B. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

Gradhand, M. & Annett, J. F. The Berry curvature of the Bogoliubov quasiparticle Bloch states in the unconventional superconductor Sr2RuO4. J. Phys. Condens. Matter 26, 274205 (2014).

Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–211 (2014).

Soluyanov, A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

Sipe, J. & Shkrebtii, A. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337–5352 (2000).

Wittmann, B. et al. Circular photogalvanic effect in HgTe/CdHgTe quantum well structures. Semicond. Sci. Technol. 25, 095005 (2010).

Hosur, P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B 83, 035309 (2011).

McIver, J., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotech. 7, 96–100 (2012).

Yuan, H. et al. Generation and electric control of spin–valley-coupled circular photogalvanic current in WSe2. Nat. Nanotech. 9, 851–857 (2014).

Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

Muechler, L., Alexandradinata, A., Neupert, T. & Car, R. Topological nonsymmorphic metals from band inversion. Phys. Rev. X 6, 041069 (2016).

Wu, S. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 9, 149–153 (2013).

Dhara, S., Mele, E. J. & Agarwal, R. Voltage-tunable circular photogalvanic effect in silicon nanowires. Science 349, 726–729 (2015).

Zhang, Y., Sun, Y. & Yan, B. The Berry curvature dipole in Weyl semimetal materials: an ab initio study. Phys. Rev. B 97, 041101(R) (2017).

Lee, J., Wang, Z., Xie, H., Mak, K. & Shan, J. Valley magnetoelectricity in single-layer MoS2. Nat. Mater. 16, 887–891 (2017).

Taychatanapat, T. & Jarillo-Herrero, P. Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys. Rev. Lett. 105, 166601 (2010).

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).