Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2
Tóm tắt
Từ khóa
Tài liệu tham khảo
Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).
Zheng, F. et al. On the quantum spin Hall gap of monolayer 1T′–WTe2. Adv. Mater. 28, 4845–4851 (2016).
Jia, Z.-Y. et al. Direct visualization of a two-dimensional topological insulator in the single-layer 1T′-WTe2. Phys. Rev. B 96, 041108 (2017).
Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).
Wu, S. et al. Observation of Topological Insulating and Superconducting Ground States of Monolayer WTe2. Bull. Am. Phys. Soc. https://meetings.aps.org/Meeting/MAR18/Session/B37.4 (2018).
MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2 ferromagnet bilayers. Nat. Phys. 13, 300–305 (2016).
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
Moore, J. E. & Orenstein, J. Confinement-induced Berry phase and helicity-dependent photocurrents. Phys. Rev. Lett. 105, 026805 (2010).
Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).
Yoda, T., Yokoyama, T. & Murakami, S. Orbital Edelstein effect as a condensed-matter analog of solenoid. Nano Lett. 18, 916–920 (2018).
Basov, D., Fogler, M. & de Abajo, F. G. Polaritons in van der Waals materials. Science 354, aag1992 (2016).
Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospin in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).
Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).
de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).
Son, D. & Spivak, B. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).
Gradhand, M. & Annett, J. F. The Berry curvature of the Bogoliubov quasiparticle Bloch states in the unconventional superconductor Sr2RuO4. J. Phys. Condens. Matter 26, 274205 (2014).
Sipe, J. & Shkrebtii, A. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337–5352 (2000).
Wittmann, B. et al. Circular photogalvanic effect in HgTe/CdHgTe quantum well structures. Semicond. Sci. Technol. 25, 095005 (2010).
Hosur, P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B 83, 035309 (2011).
McIver, J., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotech. 7, 96–100 (2012).
Yuan, H. et al. Generation and electric control of spin–valley-coupled circular photogalvanic current in WSe2. Nat. Nanotech. 9, 851–857 (2014).
Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).
Muechler, L., Alexandradinata, A., Neupert, T. & Car, R. Topological nonsymmorphic metals from band inversion. Phys. Rev. X 6, 041069 (2016).
Wu, S. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 9, 149–153 (2013).
Dhara, S., Mele, E. J. & Agarwal, R. Voltage-tunable circular photogalvanic effect in silicon nanowires. Science 349, 726–729 (2015).
Zhang, Y., Sun, Y. & Yan, B. The Berry curvature dipole in Weyl semimetal materials: an ab initio study. Phys. Rev. B 97, 041101(R) (2017).
Lee, J., Wang, Z., Xie, H., Mak, K. & Shan, J. Valley magnetoelectricity in single-layer MoS2. Nat. Mater. 16, 887–891 (2017).
Taychatanapat, T. & Jarillo-Herrero, P. Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys. Rev. Lett. 105, 166601 (2010).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).