Electrically Insulated Epoxy Nanocomposites Reinforced with Synergistic Core–Shell SiO2@MWCNTs and Montmorillonite Bifillers

Macromolecular Chemistry and Physics - Tập 218 Số 23 - 2017
Zijian Wu1,2, Sheng Gao1, Lei Chen3, Dawei Jiang4, Qian Shao5, Bing Zhang5, Zhao-Hui Zhai1, Chen Wang1, Min Zhao6,3, Yingyi Ma1, Xiaohong Zhang2, Ling Weng1,2, Mingyan Zhang1,2, Zhanhu Guo6
1College of Material Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, China
2Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150040, China
3School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
4Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, Northeast Forestry University, Harbin, 150040, China
5College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
6Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, 77966 USA

Tóm tắt

Abstract

With unique physicochemical properties, multiwalled carbon nanotubes (MWCNTs) have enabled major achievement in polymer composites as reinforcing fillers. Nevertheless, high conductivity of raw MWCNTs (R‐MWCNTs) limits their wider applications in certain fields, which require outstanding thermal conductivity, mechanical, and insulation properties simultaneously. In this article, silica (SiO2) coated MWCNTs core–shell hybrids (SiO2@MWCNTs) and organically modified montmorillonite (O‐MMT) are employed to modify epoxy (EP) simultaneously. The epoxy‐clay system is cured by using anhydride curing agent. The impact strength and flexural strength of final nanocomposites are greatly improved. Meanwhile, the final composites remain in high electrical insulation. Compared to mixed acid treated MWCNTs (C‐MWCNTs) (0.5 wt%)/EP nanocomposites, the volume resistivity of the O‐MMT(4 wt%)/SiO2@MWCNTs(0.5 wt%)/EP nanocomposites increases more than six orders of magnitude. Synergistic toughening effect occurs when using core–shell SiO2@MWCNTs and MMT bifillers. The electrical insulation is attributed to the suppressed electron transport effect by SiO2layer on the CNTs surface, and the blocked conductive CNTs network by the buried 2D structural O‐MMT. The SiO2@MWCNTs core–shell hybrids also benefit to decrease the dielectric constant and dielectric loss of CNTs/EP composites. This work provides guidance to using CNTs as reinforcement fillers to toughen the polymers for electric insulating applications.

Từ khóa


Tài liệu tham khảo

10.1080/03602559.2016.1163588

10.1016/j.compscitech.2015.06.013

10.1016/j.carbon.2013.07.047

10.1016/j.matdes.2017.04.004

10.1016/j.carbon.2008.06.048

Zhao S., 2017, Adv. Mater. Interfaces, 4

10.1039/C7TC00389G

10.1016/j.polymer.2016.12.056

10.1016/j.polymer.2016.09.056

10.1080/17518253.2017.1342001

10.1016/j.memsci.2017.04.057

10.1039/C7TC01502J

Wei H., 2017, Adv. Compos. Hybrid Mater.

10.1016/j.polymer.2017.02.083

10.1039/C7TC00389G

10.1039/C7TC02948A

10.1039/C6TA09726J

10.1039/C6TC03713E

10.1039/C6NR06622D

10.1039/C6NR02216B

10.1021/acsami.6b02888

10.1016/j.polymer.2016.05.017

Liu H., 2016, Appl. Phys. Lett., 108, 918

10.1039/C5TC02751A

10.1039/C5TA02707A

10.1016/j.polymer.2015.04.064

10.1039/C4TA04791E

10.1039/C6TC04780G

10.1039/C7CE00279C

10.1149/2.1531709jes

10.1016/j.polymer.2017.07.042

10.1016/j.polymer.2017.07.083

Wang C., 2017, Polym. Adv. Technol.

Yang W., 2017, Polym. Eng. Sci.

10.1039/C7TA05123A

10.1039/c0jm04007j

10.1002/adfm.201290064

10.1088/2053-1591/1/3/035029

10.1002/adma.201501728

10.1016/j.compscitech.2012.11.015

10.1021/jp709977m

10.1007/s00289-009-0068-5

10.1039/c0jm04007j

10.1039/C4TC01051E

10.1002/app.35015

Zhang M., 2007, IEEE Int. Conf. Solid Dielectrics, 360, 10.1109/ICSD.2007.4290827

10.4236/jeas.2012.24010

10.1016/j.polymer.2013.04.062

10.1039/C2TC00379A

10.1039/C6TC01210H

10.1039/C6TC05261D

10.1039/b603020c

10.1039/c0jm00063a

10.1016/j.carbon.2012.12.017

10.1109/T-DEI.2008.4446732

10.1016/j.matlet.2016.08.036

10.1039/C7TC00222J

10.1021/am5082183

10.1016/j.carbon.2015.09.020

10.1016/j.compscitech.2011.12.014

10.1039/c3nr00625e

10.1039/c1jm11766a

10.1002/app.31594

10.1016/j.carbon.2011.09.029

10.1016/j.compositesa.2015.03.015

10.1016/j.carbon.2009.01.014

10.1016/j.micromeso.2010.09.020