Electrical resistivity of fcc phase iron hydrides at high pressures and temperatures
Tài liệu tham khảo
Akahama, 2006, Pressure calibration of diamond anvil Raman gauge to 310GPa, J. Appl. Phys., 100, 043516, 10.1063/1.2335683
Anzellini, 2013, Melting of iron at Earth's inner core boundary based on fast X-ray diffraction, Science, 340, 464, 10.1126/science.1233514
Badding, 1991, High-pressure chemistry of hydrogen in metals: in situ study of iron hydride, Science, 253, 421, 10.1126/science.253.5018.421
Basinski, 1955, The lattice expansion of iron, Proc. R. Soc. A, 229, 459, 10.1098/rspa.1955.0102
Birch, 1952, Elasticity and constitution of the Earth's interior, J. Geophys. Res., 52, 227, 10.1029/JZ057i002p00227
de Koker, 2012, Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth's core, Proc. Natl. Acad. Sci. USA, 109, 4070, 10.1073/pnas.1111841109
Dewaele, 2006, Quasihydrostatic equation of state of iron above 2Mbar, Phys. Rev. Lett., 97, 215504, 10.1103/PhysRevLett.97.215504
Dorogokupets, 2007, Ruby, metals, and MgO as alternative pressure scales: a semiempirical description of shock-wave, ultrasonic, X-ray, and thermochemical data at high temperatures and pressures, Phys. Rev. B, 75, 024115, 10.1103/PhysRevB.75.024115
Fukai, 1992, Some properties of the Fe–H system at high pressures and temperatures, and their implications for the Earth's core, 373
Fukai, 1983, Hydrogen in the earth's core. Experimental approach, Proc. Japan Acad. Ser. B, 59, 158, 10.2183/pjab.59.158
Funamori, 1996, High-pressure and high-temperature in situ X-ray diffraction study of iron to above 30GPa using MA8-type apparatus, Geophys. Res. Lett., 23, 953, 10.1029/96GL00943
Gomi, 2013, The high conductivity of iron and thermal evolution of the Earth's core, Phys. Earth Planet. Inter., 224, 88, 10.1016/j.pepi.2013.07.010
Gomi, 2015, Electrical resistivity and thermal conductivity of hcp Fe–Ni alloys under high pressure: Implications for thermal convection in the Earth's core, Phys. Earth Planet. Inter., 247, 2, 10.1016/j.pepi.2015.04.003
Gomi, 2016, Electrical resistivity of substitutionally disordered hcp Fe–Si and Fe–Ni alloys: chemically-induced resistivity saturation in the Earth's core, Earth Planet. Sci. Lett., 451, 51, 10.1016/j.epsl.2016.07.011
Helffrich, 2014, Outer core compositional layering and constraints on core liquid transport properties, Earth Planet. Sci. Lett., 391, 256, 10.1016/j.epsl.2014.01.039
Hiroi, 2005, The phase diagram and superabundant vacancy formation in Fe–H alloys revisited, J. Alloy Compd., 404, 252, 10.1016/j.jallcom.2005.02.076
Iizuka-Oku, 2017, Hydrogenation of iron in the early stage of Earth's evolution, Nat. Commun., 8, 14096, 10.1038/ncomms14096
Komabayashi, 2014, Thermodynamics of melting relations in the system Fe–FeO at high pressure: implications for oxygen in the Earth's core, J. Geophys. Res., 119, 4164, 10.1002/2014JB010980
Komabayashi, 2012, In situ X-ray diffraction measurements of the fcc–hcp phase transition boundary of an Fe–Ni alloy in an internally heated diamond anvil cell, Phys. Chem. Miner., 39, 329, 10.1007/s00269-012-0490-3
Konôpková, 2016, Direct measurement of thermal conductivity in solid iron at planetary core conditions, Nature, 534, 99, 10.1038/nature18009
Labrosse, 2015, Thermal evolution of the core with a high thermal conductivity, Phys. Earth Planet. Inter., 247, 36, 10.1016/j.pepi.2015.02.002
Machida, 2014, Site occupancy of interstitial deuterium atoms in face-centred cubic iron, Nat. Commun., 5, 5063, 10.1038/ncomms6063
Mao, 2004, Nuclear resonant X-ray scattering of iron hydride at high pressure, Geophys. Res. Lett., 31, L15618, 10.1029/2004GL020541
Matsuoka, 2011, Structural and electrical transport properties of FeHx under high pressures and low temperatures, High Pressure Res., 31, 64, 10.1080/08957959.2010.522447
Narygina, 2011, X-ray diffraction and Mössbauer spectroscopy study of fcc iron hydride FeH at high pressures and implications for the composition of the Earth's core, Earth Planet. Sci. Lett., 307, 409, 10.1016/j.epsl.2011.05.015
Nishi, 2014, Stability of hydrous silicate at high pressures and water transport to the deep lower mantle, Nature Geosci., 7, 224, 10.1038/ngeo2074
Nishi, 2017, The pyrite-type high-pressure form of FeOOH, Nature, 547, 205, 10.1038/nature22823
Nomura, 2014, Low core-mantle boundary temperature inferred from the solidus of pyrolite, Science, 343, 522, 10.1126/science.1248186
Ohishi, 2008, Highly intense monochromatic X-ray diffraction facility for high-pressure research at SPring-8, High Pressure Res., 28, 163, 10.1080/08957950802208910
Ohta, 2016, Experimental determination of the electrical resistivity of iron at Earth's core conditions, Nature, 534, 95, 10.1038/nature17957
Pépin, 2014, New iron hydrides under high pressure, Phys. Rev. Lett., 113, 265504, 10.1103/PhysRevLett.113.265504
Pépin, 2017, Synthesis of FeH5: a layered structure with atomic hydrogen slabs, Science, 357, 382, 10.1126/science.aan0961
Poirier, 1994, Light elements in the Earth's outer core: a critical review, Phys. Earth Planet. Inter., 85, 319, 10.1016/0031-9201(94)90120-1
Pozzo, 2012, Thermal and electrical conductivity of iron at Earth's core conditions, Nature, 485, 355, 10.1038/nature11031
Sakamaki, 2009, Melting phase relation of FeHx up to 20GPa: Implication for the temperature of the Earth's core, Phys. Earth Planet. Inter., 174, 192, 10.1016/j.pepi.2008.05.017
Seagle, 2013, Electrical and thermal transport properties of iron and iron-silicon alloy at high pressure, Geophys. Res. Lett., 40, 5377, 10.1002/2013GL057930
Secco, 2017, Thermal conductivity and Seebeck coefficient of Fe and Fe–Si alloys: implications for variable Lorenz number, Phys. Earth Planet. Inter., 265, 23, 10.1016/j.pepi.2017.01.005
Shibazaki, 2011, Effect of hydrogen on the melting temperature of FeS at high pressure: implications for the core of Ganymede, Earth Planet. Sci. Lett., 301, 153, 10.1016/j.epsl.2010.10.033
Shibazaki, 2012, Sound velocity measurements in dhcp-FeH up to 70GPa with inelastic X-ray scattering: Implications for the composition of the Earth's core, Earth Planet. Sci. Lett., 313–314, 79, 10.1016/j.epsl.2011.11.002
Shibazaki, 2014, High-pressure and high-temperature phase diagram for Fe0.9Ni0.1–H alloy, Phys. Earth Planet. Inter., 228, 192, 10.1016/j.pepi.2013.12.013
Stevenson, 1977, Hydrogen in the Earth's core, Nature, 268, 130, 10.1038/268130a0
Suehiro, 2017, The influence of sulfur on the electrical resistivity of hcp iron: Implications for the core conductivity of Mars and Earth, Geophys. Res. Lett., 44, 8254, 10.1002/2017GL074021
Tagawa, 2016, Compression of Fe–Si–H alloys to core pressures, Geophys. Res. Lett., 43, 3686, 10.1002/2016GL068848
Terasaki, 2011, Hydrogenation of FeSi under high pressure, Am. Mineral., 96, 93, 10.2138/am.2011.3628
Terasaki, 2012, Stability of Fe–Ni hydride after the reaction between Fe–Ni alloy and hydrous phase (δ-AlOOH) up to 1.2 Mbar: possibility of H contribution to the core density deficit, Phys. Earth Planet. Inter., 194–195, 18, 10.1016/j.pepi.2012.01.002
Thompson, 2018, High-pressure geophysical properties of fcc phase FeHx, Geochem. Geophys. Geosys., 19, 305, 10.1002/2017GC007168
Umemoto, 2015, Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations, Geophys. Res. Lett., 42, 7513, 10.1002/2015GL065899
Wagle, 2018, Saturation and negative temperature coefficient of electrical resistivity in liquid iron-sulfur alloys at high densities from first-principles calculations, Phys. Rev. B, 97, 094307, 10.1103/PhysRevB.97.094307
Wiesmann, 1977, Simple model for characterizing the electrical resistivity in A-15 superconductors, Phys. Rev. Lett., 38, 782, 10.1103/PhysRevLett.38.782
Xu, 2018
Zhang, 2018, Electrical resistivity of Fe–C alloy at high pressure: effects of carbon as a light element on the thermal conductivity of the Earth's core, J. Geophys. Res., 123, 3564, 10.1029/2017JB015260