Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures

Materials Today Physics - Tập 2 - Trang 6-34 - 2017
Jingang Wang1,2, Fengcai Ma2, Wenjie Liang3, Mengtao Sun1,3,2
1Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, PR China
2Department of Physics, Liaoning University, Shenyang 110036, PR China
3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896

Geim, 2009, The rise of graphene, Nat. Mater., 6, 183, 10.1038/nmat1849

Castro Neto, 2009, Geim AK: the electronic properties of graphene, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109

Geim, 2008, Carbon wonderland, Sci. Am., 298, 90, 10.1038/scientificamerican0408-90

Nair, 2008, Fine structure constant defines visual transparency of graphene, Science, 320, 1308, 10.1126/science.1156965

Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385, 10.1126/science.1157996

Balandin, 2011, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569, 10.1038/nmat3064

Balandin, 2008, Extremely high thermal conductivity of graphene: prospects for thermal management applications in silicon nanoelectronics, 92, 1

Geim, 2007, Graphene: exploring carbon flatland, Phys. Today, 60, 35, 10.1063/1.2774096

Ando, 2009, The electronic properties of graphene and carbon nanotubes, Npg Asia Mater., 1, 17, 10.1038/asiamat.2009.1

Dresselhaus, 2010, Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy, Condens. Matter Phys., 1, 89

Wang, 2013, One-dimensional electrical contact to a two-dimensional material, Science, 342, 614, 10.1126/science.1244358

Reich, 1824, Raman spectroscopy of graphite, Philos. Trans. A Math. Phys. Eng. Sci., 2004, 2271

Yan, 2009, Electron-phonon interactions for optical phonon modes in few-layer graphene, Physics, 79, 115443

Saha, 2008, Phonons in few-layer graphene and interplanar interaction: a first-principles study, Phys. Rev. B Condens. Matter, 78, 165421, 10.1103/PhysRevB.78.165421

Park, 2010, Angle-resolved photoemission spectra of graphene from first-principles calculations, Nano Lett., 9, 4234, 10.1021/nl902448v

Park, 2008, Electron−Phonon interactions in graphene, bilayer graphene, and graphite, Nano Lett., 8, 4229, 10.1021/nl801884n

Charlier, 2007, Electron and phonon properties of graphene: their relationship with carbon nanotubes, 111, 673

Slonczewski, 1958, Band structure of graphite, Phys. Rev., 109, 272, 10.1103/PhysRev.109.272

Semenoff, 1984, Condensed-matter simulation of a three-dimensional anomaly, Phys. Rev. Lett., 53, 2449, 10.1103/PhysRevLett.53.2449

Haldane, 1988, Model for a quantum Hall effect without landau levels: condensed-matter realization of the “parity anomaly, Phys. Rev. Lett., 61, 2015, 10.1103/PhysRevLett.61.2015

Novoselov, 2005, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197, 10.1038/nature04233

Zhang, 2005, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438, 201, 10.1038/nature04235

Boyanovsky, 1986, Physical origin of topological mass in 2 + 1 dimensions, Nucl. Phys. B, 270, 483, 10.1016/0550-3213(86)90564-X

Novoselov, 2006, Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene, Nat. Phys., 2, 177, 10.1038/nphys245

Mccann, 2006, Landau-level degeneracy and quantum Hall effect in a graphite bilayer, Phys. Rev. Lett., 96, 086805, 10.1103/PhysRevLett.96.086805

Katsnelson, 2006, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys., 2, 620, 10.1038/nphys384

Dombey, 1999, Seventy years of the Klein paradox, Phys. Rep., 315, 41, 10.1016/S0370-1573(99)00023-X

Huard, 2007, Transport measurements across a tunable potential barrier in graphene, Phys. Rev. Lett., 98, 236803, 10.1103/PhysRevLett.98.236803

Micha, 2011, Dirac and Klein-Gordon particles in one-dimensional periodic potentials, Phys. Rev. B Condens. Matter, 77, 115446

Allain, 2011, Klein tunneling in graphene: optics with massless electrons, Eur. Phys. J. B, 83, 301, 10.1140/epjb/e2011-20351-3

Du, 2008, Approaching ballistic transport in suspended graphene, Nat. Nanotechnol., 3, 491, 10.1038/nnano.2008.199

Miao, 2007, Phase-coherent transport in graphene quantum billiards, Science, 317, 1530, 10.1126/science.1144359

Cuevas, 2006, Subharmonic gap structure in short ballistic graphene junctions, Phys. Rev. B, 74, 10.1103/PhysRevB.74.180501

Beenakker, 2006, Specular Andreev reflection in graphene, Phys. Rev. Lett., 97, 067007, 10.1103/PhysRevLett.97.067007

Tworzydło, 2006, Sub-Poissonian shot noise in graphene, Phys. Rev. Lett., 96, 246802, 10.1103/PhysRevLett.96.246802

Dicarlo, 2008, Shot noise in graphene, Phys. Rev. Lett., 100, 156801, 10.1103/PhysRevLett.100.156801

Xu, 2007, Josephson current and multiple andreev reflections in graphene SNS junctions, Phys. Rev. B, 77, 998

Li, 2007, Observation of Landau levels of Dirac fermions in graphite, Nat. Phys., 3, 623, 10.1038/nphys653

Ando, 1982, Electronic properties of two-dimensional systems, Rev. Mod. Phys., 54, 437, 10.1103/RevModPhys.54.437

Miller, 2009, Observing the quantization of zero mass carriers in graphene, Science, 324, 924, 10.1126/science.1171810

Jiang, 2007, Infrared spectroscopy of Landau levels of graphene, Phys. Rev. Lett., 98, 197403, 10.1103/PhysRevLett.98.197403

Henriksen, 2010, Interaction-induced shift of the cyclotron resonance in graphene using infrared spectroscopy, Phys. Rev. Lett., 104, 067404, 10.1103/PhysRevLett.104.067404

Shizuya, 2009, Many-body corrections to cyclotron resonance in monolayer and bilayer graphene, Phys. Rev. B Condens. Matter, 81, 075407, 10.1103/PhysRevB.81.075407

Novoselov, 2007, Room-temperature quantum Hall effect in graphene, Science, 315, 1379, 10.1126/science.1137201

Zhang, 2005, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438, 201, 10.1038/nature04235

Morozov, 2008, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett., 100, 016602, 10.1103/PhysRevLett.100.016602

Chen, 2008, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol., 3, 206, 10.1038/nnano.2008.58

Berger, 2006, Electronic confinement and coherence in patterned epitaxial graphene, Science, 312, 1191, 10.1126/science.1125925

Wallace, 1947, The band theory of graphite, Phys. Rev., 71, 622, 10.1103/PhysRev.71.622

Damle, 1997, Non-zero temperature transport near quantum critical points, Phys. Rev. B, 56, 133, 10.1103/PhysRevB.56.8714

Kovtun, 2005, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett., 94, 111601, 10.1103/PhysRevLett.94.111601

Son, 2007, Vanishing bulk viscosities and conformal invariance of the unitary fermi gas, Phys. Rev. Lett., 98, 020604, 10.1103/PhysRevLett.98.020604

Karsch, 2007, Universal properties of bulk viscosity near the QCD phase transition, Phys. Lett. B, 663, 217, 10.1016/j.physletb.2008.01.080

Levitov, 2016, Electron viscosity, current vortices and negative nonlocal resistance in graphene, Naure Phys., 12, 672

Yoo, 1997, Scanning single-electron transistor microscopy: imaging individual charges, Science, 276, 579, 10.1126/science.276.5312.579

Javey, 2002, High- dielectrics for advanced carbonnanotube transistors and logic gates, Nat. Mater, 1, 241, 10.1038/nmat769

Javey, 2004, Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays, Nano Lett., 4, 1319, 10.1021/nl049222b

Klinke, 2006, Charge transfer induced polarity switching in carbon nanotube transistors, Nano Lett., 5, 555

Kang, 2007, High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes, Nat. Nanotechnol., 2, 230, 10.1038/nnano.2007.77

Avouris, 2014, Carbon-based electronics, Nat. Nanotechnol., 2, 605, 10.1038/nnano.2007.300

Akinwande, 2006, Analysis of the frequency response of carbon nanotube transistors, IEEE Trans. Nanotechnol., 5, 599, 10.1109/TNANO.2006.880451

Schedin, 2007, Detection of individual gas molecules adsorbed on graphene, Nat. Mater., 6, 652, 10.1038/nmat1967

Li, 2010, Low operating bias and matched input-output characteristics in graphene logic inverters, Nano Lett., 10, 2357, 10.1021/nl100031x

Meric, 2008, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nat. Nanotechnol., 3, 654, 10.1038/nnano.2008.268

Sordan, 2009, Logic gates with a single graphene transistor, Appl. Phys. Lett., 94, 51, 10.1063/1.3079663

Guerriero, 2012, Graphene audio voltage amplifier, Small, 8, 356, 10.1002/smll.201290016

Kim, 2013, Highly tunable local gate controlled complementary graphene device performing as inverter and voltage controlled resistor, Nanotechnology, 24, 395202, 10.1088/0957-4484/24/39/395202

Liao, 2011, Thermally limited current carrying ability of graphene nanoribbons, Phys. Rev. Lett., 106, 256801, 10.1103/PhysRevLett.106.256801

Liu, 2008, Graphene oxidation: thickness-dependent etching and strong chemical doping, Nano Lett., 8, 1965, 10.1021/nl0808684

Rizzi, 2012, Cascading wafer-scale integrated graphene complementary inverters under ambient conditions, Nano Lett., 12, 3948, 10.1021/nl301079r

Lin, 2011, Wafer-scale graphene integrated circuit, Science, 332, 1294, 10.1126/science.1204428

Yang, 2010, Triple-mode single-transistor graphene amplifier and its applications, Acs Nano, 4, 5532, 10.1021/nn1021583

Xia, 2011, The origins and limits of metal-graphene junction resistance, Nat. Nanotechnol., 6, 179, 10.1038/nnano.2011.6

Wang, 2009, Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene, Nat. Chem., 1, 206, 10.1038/nchem.212

Emtsev, 2008, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nat. Mater., 8, 203, 10.1038/nmat2382

Guerriero, 2013, Gigahertz integrated graphene ring oscillators, Acs Nano, 7, 5588, 10.1021/nn401933v

Wood, 2011, Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition, Nano Lett., 11, 4547, 10.1021/nl201566c

Ghahari, 2017, An on/off Berry phase switch in circular graphene resonators, Science, 356, 845, 10.1126/science.aal0212

Casiraghi, 2007, Raman fingerprint of charged impurities in graphene, Appl. Phys. Lett., 91, 183, 10.1063/1.2818692

Chen, 2009, Ionic screening of charged-impurity scattering in graphene, Nano Lett., 9, 1621, 10.1021/nl803922m

Lin, 2010, 100-GHz transistors from wafer-scale epitaxial graphene, Science, 327, 10.1126/science.1184289

Pakdel, 2012, Low-dimensional boron nitride nanomaterials, Mater. Today, 15, 256, 10.1016/S1369-7021(12)70116-5

Furthmüller, 1994, Ab initio calculation of the structural and electronic properties of carbon and boron nitride using ultrasoft pseudopotentials, Phys. Rev. B Condens Matter., 50, 15606, 10.1103/PhysRevB.50.15606

Yu, 2003, Ab initio study of phase transformations in boron nitride, Phys. Rev. B Condens. Matter, 67, 14108, 10.1103/PhysRevB.67.014108

Zhang, 2006, Structural deformation, strength, and instability of cubic BN compared to diamond: a first-principles study, Phys. Rev. B Condens. Matter, 73, 2368, 10.1103/PhysRevB.73.144115

Xu, 1991, Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures, Phys. Rev. B Condens. Matter, 44, 7787, 10.1103/PhysRevB.44.7787

Knittle, 1995, High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions, Phys. Rev. B Condens. Matter, 51, 12149, 10.1103/PhysRevB.51.12149

Pakdel, 2012, Low-dimensional boron nitride nanomaterials, Mater. Today, 15, 256, 10.1016/S1369-7021(12)70116-5

Liu, 1995, Cubic-to-rhombohedral transformation in boron nitride induced by laser heating: in situ Raman-spectroscopy studies, Phys. Rev. B Condens. Matter, 51, 8591, 10.1103/PhysRevB.51.8591

Blase, 1995, Quasiparticle band structure of bulk hexagonal boron nitride and related systems, Phys. Rev. B Condens. Matter, 51, 6868, 10.1103/PhysRevB.51.6868

Zupan, 1972, Energy bands in boron nitride and graphite, Phys. Rev. B, 6, 2477, 10.1103/PhysRevB.6.2477

Ooi, 2005, Electronic structure and bonding in hexagonal boron nitride, J. Phys. Condens. Matter, 18, 97, 10.1088/0953-8984/18/1/007

Ooi, 2006, Structural properties of hexagonal boron nitride, Model. Simul. Mater. Sci. Eng., 14, 515, 10.1088/0965-0393/14/3/012

Topsakal, 2009, First-principles study of two-and one-dimensional honeycomb structures of boron nitride, Phys. Rev. B, 79, 115442, 10.1103/PhysRevB.79.115442

Ekuma, 2017, First-Principles-based method for electron localization: application to monolayer hexagonal boron nitride, Phys. Rev. Lett., 118, 106404, 10.1103/PhysRevLett.118.106404

Meyer, 2009, Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes, Nano Lett., 9, 2683, 10.1021/nl9011497

Han, 2008, Structure of chemically derived mono- and few-atomic-layer boron nitride sheets, Appl. Phys. Lett., 93, 223103, 10.1063/1.3041639

Watanabe, 2004, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater., 3, 404, 10.1038/nmat1134

Gao, 2013, Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils, Acs Nano, 7, 5199, 10.1021/nn4009356

Kim, 2012, Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition, Nano Lett., 12, 161, 10.1021/nl203249a

Arnaud, 2006, Huge excitonic effects in layered hexagonal boron nitride, Phys. Rev. Lett., 96, 026402, 10.1103/PhysRevLett.96.026402

Blase, 1995, Quasiparticle band structure of bulk hexagonal boron nitride and related systems, Phys. Rev. B Condens. Matter, 51, 6868, 10.1103/PhysRevB.51.6868

Furthmüller, 1994, Ab initio calculation of the structural and electronic properties of carbon and boron nitride using ultrasoft pseudopotentials, Phys. Rev. B Condens Matter., 50, 15606, 10.1103/PhysRevB.50.15606

Xu, 1991, Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures, Phys. Rev. B Condens. Matter, 44, 7787, 10.1103/PhysRevB.44.7787

Jang, 2008, Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering, Phys. Rev. Lett., 101, 146805, 10.1103/PhysRevLett.101.146805

Kim, 2012, Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices, Acs Nano, 6, 8583, 10.1021/nn301675f

Datta, 2008, Surface potentials and layer charge distributions in few-layer graphene, Nano Lett., 9, 7, 10.1021/nl8009044

Castellanos-Gomez, 2012, Electric-field screening in atomically thin layers of MoS2: the role of interlayer coupling, Adv. Mater., 25, 899, 10.1002/adma.201203731

Li, 2015, Dielectric screening in atomically thin boron nitride nanosheets, Nano Lett., 15, 218, 10.1021/nl503411a

Santos, 2013, Electric-field dependence of the effective dielectric constant in graphene, Nano Lett., 13, 898, 10.1021/nl303611v

Li, 2008, Tunable bandgap structures of two-dimensional boron nitride, J. Appl. Phys., 104, 094311, 10.1063/1.3006138

Park, 2008, Energy gaps and stark effect in boron nitride nanoribbons, Nano Lett., 8, 2200, 10.1021/nl080695i

Zheng, 2008, Half metallicity along the edge of zigzag boron nitride nanoribbons, Phys. Rev. B, 78, 205415, 10.1103/PhysRevB.78.205415

Slotman, 2013, Structure, stability and defects of single layer hexagonal BN in comparison to graphene, J. Phys. Condens. Matter An Inst. Phys. J., 25, 045009, 10.1088/0953-8984/25/4/045009

He, 2009, p-type conduction in beryllium-implanted hexagonal boron nitride films, Appl. Phys. Lett., 95, 252106, 10.1063/1.3276065

Lu, 1996, Electrical properties of boron nitride thin films grown by neutralized nitrogen ion assisted vapor deposition, Appl. Phys. Lett., 68, 622, 10.1063/1.116488

Dahal, 2011, Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material, Appl. Phys. Lett., 98, 211110, 10.1063/1.3593958

Nose, 2006, Electric conductivity of boron nitride thin films enhanced by in situ doping of zinc, Appl. Phys. Lett., 89, 956, 10.1063/1.2354009

Xue, 2013, Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets, Nanoscale Res. Lett., 8, 1, 10.1186/1556-276X-8-49

Watanabe, 2004, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater., 3, 404, 10.1038/nmat1134

Evans, 2008, Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy, J. Phys. Condens Matter, 20, 075233, 10.1088/0953-8984/20/7/075233

Ponomarenko, 2011, Tunable metal-insulator transition in double-layer graphene heterostructures, Nat. Phys., 7, 958, 10.1038/nphys2114

Amet, 2011, Tunneling spectroscopy of graphene-boron nitride heterostructures, Phys. Rev. B Condens. Matter, 85, 073405, 10.1103/PhysRevB.85.073405

Britnell, 2011, Field-effect tunneling transistor based on vertical graphene heterostructures, Science, 335, 947, 10.1126/science.1218461

Simmons, 1963, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film, J. Appl. Phys., 34, 1793, 10.1063/1.1702682

Kharche, 2011, Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate, Nano Lett., 11, 5274, 10.1021/nl202725w

Lee, 2011, Electron tunneling through atomically flat and ultrathin hexagonal boron nitride, Appl. Phys. Lett., 99, 243114, 10.1063/1.3662043

Britnell, 2012, Electron tunneling through ultrathin boron nitride crystalline barriers, Nano Lett., 12, 1707, 10.1021/nl3002205

Kubota, 2007, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure, Science, 317, 932, 10.1126/science.1144216

Watanabe, 2009, Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride, Nat. Photonics, 3, 591, 10.1038/nphoton.2009.167

Lee, 2010, Frictional characteristics of atomically thin sheets, Science, 328, 76, 10.1126/science.1184167

Dean, 2010, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol., 5, 722, 10.1038/nnano.2010.172

Li, 2009, Transfer of large-area graphene films for high-performance transparent conductive electrodes, Nano Lett., 9, 4359, 10.1021/nl902623y

Lee, 2012, Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics, Nano Lett., 12, 714, 10.1021/nl203635v

Xu, 2012, Investigation of hexagonal boron nitride for application as counter electrode in dye-sensitized solar cells, Adv. Mater. Res., 512–515, 242

Majety, 2012, Band-edge transitions in hexagonal boron nitride epilayers, Appl. Phys. Lett., 101, 932, 10.1063/1.4742194

Li, 2012, Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers, Appl. Phys. Lett., 101, 67, 10.1063/1.4764533

Lin, 2013, Optoelectronic properties of hexagonal boron nitride epilayers, Quantum Sens. Nanophot. Devices X, 8631, 8631281

Podzorov, 2004, Novel high-mobility field-effect transistors based on transition metal dichalcogenides, Appl. Phys. Lett., 84, 3301, 10.1063/1.1723695

Radisavljevic, 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279

Yang, 2014, Chloride molecular doping technique on 2D materials: WS2 and MoS2, Nano Lett., 14, 6275, 10.1021/nl502603d

Lee, 2014, Atomically thin p–n junctions with van der Waals heterointerfaces, Nat. Nanotechnol., 9, 676, 10.1038/nnano.2014.150

Gao, 2013, Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils, ACS. Nano, 7, 5199, 10.1021/nn4009356

Howell, 2015, Investigation of band-offsets at monolayer-multilayer MoS₂ junctions by scanning photocurrent microscopy, Nano Lett., 15, 2278, 10.1021/nl504311p

Chuang, 2016, Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors, Nano Lett., 16, 1896, 10.1021/acs.nanolett.5b05066

Blake, 2007, Making graphene visible, Appl. Phys. Lett., 91, 063124, 10.1063/1.2768624

Balandin, 2008, Superior thermal conductivity of single-layer graphene, Nano Lett., 8, 902, 10.1021/nl0731872

Dean, 2010, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol., 5, 722, 10.1038/nnano.2010.172

Wang, 2011, High-performance graphene devices on SiO₂/Si substrate modified by highly ordered self-assembled monolayers, Adv. Mater., 23, 2464, 10.1002/adma.201100476

Decker, 2011, Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy, Nano Lett., 11, 2291, 10.1021/nl2005115

Dean, 2013, Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices, Nature, 497, 598, 10.1038/nature12186

Guo, 2008, Tuning field-induced energy gap of bilayer graphene via interlayer spacing, Appl. Phys. Lett., 92, 666, 10.1063/1.2943414

Zhou, 2007, Substrate-induced bandgap opening in epitaxial graphene, Nat. Mater., 6, 770, 10.1038/nmat2003

Giovannetti, 2007, Substrate-induced bandgap in graphene on hexagonal boron nitride, Phys. Rev. B Condens. Matter & Mater. Phys., 76, 3009, 10.1103/PhysRevB.76.073103

Slawinska, 2010, Revers. modifications linear dispersion - graphene between boron nitride monolayers, 82, 2283

Lu, 2008, Asymmetric spin gap opening of graphene on cubic boron nitride (111), Substrate. J.phys.chem.c, 112, 12683, 10.1021/jp802525v

Moon, 2014, Electronic properties of graphene/hexagonal-boron-nitride moiré superlattice, Phys. Rev. B.., 90, 155406, 10.1103/PhysRevB.90.155406

Zhou, 2015, Van der Waals bilayer energetics: generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers, Phys. Rev. B, 92, 155438, 10.1103/PhysRevB.92.155438

Hunt, 2013, Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure, Science, 340, 1427, 10.1126/science.1237240

Zhong, 2011, First-principles study of strain-induced modulation of energy gaps of graphene/BN and BN bilayers, Phys. Rev. B, 83, 193403, 10.1103/PhysRevB.83.193403

Lebedeva, 2016, Dislocations in stacking and commensurate-incommensurate phase transition in bilayer graphene and hexagonal boron nitride, Phys. Rev. B, 93, 235414, 10.1103/PhysRevB.93.235414

Slotman, 2014, Phonons and electron-phonon coupling in graphene-h-BN heterostructures, Ann. Der Phys., 526, 381, 10.1002/andp.201400155

Sachs, 2011, Adhesion and electronic structure of graphene on hexagonal boron nitride substrates, Phys. Rev. B, 84, 195414, 10.1103/PhysRevB.84.195414

Giovannetti, 2007, Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations, Phys. Rev. B Condens. Matter & Mater. Phys., 76, 3009

Fan, 2011, Tunable electronic structures of graphene/boron nitride heterobilayers, Appl. Phys. Lett., 98, 083103, 10.1063/1.3556640

Argentero, 2017, Unraveling the 3D Atomic Structure of a Suspended Graphene/hBN van der Waals Heterostructure, Nano Lett., 17, 1409, 10.1021/acs.nanolett.6b04360

Wang, 2016, Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride, Nat. Phys., 12, 1111, 10.1038/nphys3856

Sachs, 2011, Adhesion and electronic structure of graphene on hexagonal boron nitride substrates, Phys. Rev. B, 84, 195414, 10.1103/PhysRevB.84.195414

Jung, 2015, Vibrational properties of h-BN and h-BN-graphene heterostructures probed by inelastic electron tunneling spectroscopy, Sci. Rep., 5, 16642, 10.1038/srep16642

Dean, 2013, Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices, Nature, 497, 598, 10.1038/nature12186

Hofstadter, 1976, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B, 14, 2239, 10.1103/PhysRevB.14.2239

Albrecht, 2001, Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance, Phys. Rev. Lett., 86, 147, 10.1103/PhysRevLett.86.147

Wang, 2015, Evidence for a fractional fractal quantum Hall effect in graphene superlattices, Science, 350, 1231, 10.1126/science.aad2102

Hunt, 2013, Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure, Science, 340, 1427, 10.1126/science.1237240

Chen, 2014, Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures, Nat. Commun., 5, 4461, 10.1038/ncomms5461

Dai, 2014, Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride, Science, 343, 1125, 10.1126/science.1246833

Caldwell, 2014, Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride, Nat. Commun., 5, 5221, 10.1038/ncomms6221

Poddubny, 2013, Hyperbolic metamaterials, Nat. Photonics, 7, 948, 10.1038/nphoton.2013.243

Dai, 2015, Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material, Nat. Commun., 6

Fei, 2012, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature, 487, 82, 10.1038/nature11253

Wang, 2014, Tunable absorption enhancement with graphene nanodisk arrays, Nano Lett., 14, 299, 10.1021/nl404042h

Yan, 2013, Damping pathways of mid-infrared plasmons in graphene nanostructures, Nat. Photonics, 7, 394, 10.1038/nphoton.2013.57

Liu, 2007, Far-field optical hyperlens magnifying sub-diffraction-limited objects, Science, 315, 1686, 10.1126/science.1137368

Vakil, 2011, Transformation optics using graphene, Science, 332, 1291, 10.1126/science.1202691

Iorsh, 2012, Novel hyperbolic metamaterials based on multilayer graphene structures, Phys. Rev. B Condens. Matter, 87, 478

Dai, 2015, Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial, Nat. Nanotechnol., 10, 682, 10.1038/nnano.2015.131

Sugino, 2002, Electron field emission from boron-nitride nanofilms, Appl. Phys. Lett., 80, 3602, 10.1063/1.1477622

Yamada, 2014, Field emission characteristics from graphene on hexagonal boron nitride, Appl. Phys. Lett., 104, 140, 10.1063/1.4881718

Mayorov, 2011, Micrometer-scale ballistic transport in encapsulated graphene at room temperature, Nano Lett., 11, 2396, 10.1021/nl200758b

Sandner, 2015, Ballistic transport in graphene antidot lattices, Nano Lett., 15, 8402, 10.1021/acs.nanolett.5b04414

Banszerus, 2015, Ballistic transport exceeding 28 μm in CVD grown graphene, Nano Lett., 16, 1387, 10.1021/acs.nanolett.5b04840

Dean, 2010, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol., 5, 722, 10.1038/nnano.2010.172

Weingart, 2010, Low-temperature ballistic transport in nanoscale epitaxial graphene cross junctions, Appl. Phys. Lett., 95, 262101, 10.1063/1.3276560

Castro, 2010, Limits on charge carrier mobility in suspended graphene due to flexural phonons, Phys. Rev. Lett., 105, 266601, 10.1103/PhysRevLett.105.266601

Bolotin, 2008, Temperature-dependent transport in suspended graphene, Phys. Rev. Lett., 101, 096802, 10.1103/PhysRevLett.101.096802

Du, 2008, Approaching ballistic transport in suspended graphene, Nat. Nanotechnol., 3, 491, 10.1038/nnano.2008.199

Weingart, 2009, Low-temperature ballistic transport in nanoscale epitaxial graphene cross junctions, Appl. Phys. Lett., 95, 206, 10.1063/1.3276560

Gómez-Navarro, 2007, Electronic transport properties of individual chemically reduced graphene oxide sheets, Nano Lett., 7, 3499, 10.1021/nl072090c

Bostwick, 2009, Quasiparticle transformation during a metal-insulator transition in graphene, Phys. Rev. Lett., 103, 056404, 10.1103/PhysRevLett.103.056404

Tikhonenko, 2009, Transition between electron localization and antilocalization in graphene, Phys. Rev. Lett., 103, 226801, 10.1103/PhysRevLett.103.226801

Banszerus, 2015, Ballistic transport exceeding 28 μm in CVD grown graphene, Nano Lett., 16, 1387, 10.1021/acs.nanolett.5b04840

Ponomarenko, 2011, Tunable metal-insulator transition in double-layer graphene heterostructures, Nat. Phys., 7, 958, 10.1038/nphys2114

Kim, 2015, Synthesis of large-area multilayer hexagonal boron nitride for high material performance, Nat. Commun., 6, 8662, 10.1038/ncomms9662

Britnell, 2011, Field-effect tunneling transistor based on vertical graphene heterostructures, Science, 335, 947, 10.1126/science.1218461

Kelly, 2017, All-printed thin-film transistors from networks of liquid-exfoliated nanosheets, Science, 356, 69, 10.1126/science.aal4062

Kang, 2016, Effects of electrode layer band structure on the performance of multilayer graphene–hBN–graphene interlayer tunnel field effect transistors, Nano Lett., 16, 4975, 10.1021/acs.nanolett.6b01646

Chari, 2015, Properties of self-aligned short-channel graphene field-effect transistors based on boron-nitride-dielectric encapsulation and edge contacts, IEEE Trans. Electron Devices, 62, 4322, 10.1109/TED.2015.2482823

François, 2013, Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures, Acs Nano, 7, 7931, 10.1021/nn402954e

Stolyarov, 2015, Suppression of 1/f noise in near-ballistic h-BN-graphene-h-BN heterostructure field-effect transistors, Appl. Phys. Lett., 107, 183, 10.1063/1.4926872

Wang, 2011, BN/Graphene/BN transistors for RF applications, Electron Device Lett. IEEE, 32, 1209, 10.1109/LED.2011.2160611

Kayyalha, 2015, Observation of reduced 1/f noise in graphene field effect transistors on boron nitride substrates, Appl. Phys. Lett., 107, 197, 10.1063/1.4930992

Roy, 2014, Field-effect transistors built from all two-dimensional material components, Acs Nano, 8, 6259, 10.1021/nn501723y

Park, 2015, Ferroelectric single-crystal gated graphene/hexagonal-BN/ferroelectric field effect transistor, Acs Nano, 9, 10729, 10.1021/acsnano.5b04339

Song, 2016, Seed-assisted growth of single-crystalline patterned graphene domains on hexagonal boron nitride by chemical vapor deposition, Nano Lett., 16, 6109, 10.1021/acs.nanolett.6b02279

Petrone, 2015, Flexible graphene field-effect transistors encapsulated in hexagonal boron nitride, Acs Nano, 9, 8953, 10.1021/acsnano.5b02816

Sirringhaus, 2014, 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon, Adv. Mater., 26, 1319, 10.1002/adma.201304346

Coropceanu, 2007, Charge transport in organic semiconductors, Chem. Rev., 107, 926, 10.1021/cr050140x

Yang, 2016, Designed assembly and integration of colloidal nanocrystals for device applications, Adv. Mater., 28, 1176, 10.1002/adma.201502851

Zaumseil, 2015, Single-walled carbon nanotube networks for flexible and printed electronics, Semicond. Sci. Technol., 30, 074001, 10.1088/0268-1242/30/7/074001

Kim, 2016, van der Waals Heterostructures with High Accuracy Rotational Alignment, Nano Lett., 16, 1989, 10.1021/acs.nanolett.5b05263

Gupta, 2006, Raman scattering from high-frequency phonons in supported n-graphene layer films, Nano Lett., 6, 2667, 10.1021/nl061420a

Lui, 2014, Imaging stacking order in few-layer graphene, Nano Lett., 11, 164, 10.1021/nl1032827

Wang, 2013, One-dimensional electrical contact to a two-dimensional material, Science, 342, 614, 10.1126/science.1244358

Sire, 2012, Flexible gigahertz transistors derived from solution-based single-layer graphene, Nano Lett., 12, 1184, 10.1021/nl203316r

Petrone, 2013, Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates, Nano Lett., 13, 121, 10.1021/nl303666m

Wu, 2012, State-of-the-Art graphene high-frequency electronics, Nano Lett., 12, 3062, 10.1021/nl300904k

Lee, 2012, All graphene-based thin film transistors on flexible plastic substrates, Nano Lett., 12, 3472, 10.1021/nl300948c

Lu, 2012, High mobility flexible graphene field-effect transistors with self-healing gate dielectrics, Acs Nano, 6, 4469, 10.1021/nn301199j

Kim, 2010, High-performance flexible graphene field effect transistors with ion gel gate dielectrics, Nano Lett., 10, 3464, 10.1021/nl101559n

Cheng, 2014, Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics, Nat. Commun., 5, 5143, 10.1038/ncomms6143

Mishchenko, 2014, Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures, Nat. Nanotechnol., 9, 808, 10.1038/nnano.2014.187

Liu, 2013, In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes, Nat. Nanotechnol., 8, 119, 10.1038/nnano.2012.256

Shi, 2014, Boron nitride-graphene nanocapacitor and the origins of anomalous size-dependent increase of capacitance, Nano Lett., 14, 1739, 10.1021/nl4037824

Özçelik, 2015, High-performance planar nanoscale dielectric capacitors, Phys. Rev. B, 91, 195445, 10.1103/PhysRevB.91.195445

Ozcelik, 2013, Size dependence in the stabilities and electronic properties of alpha-graphyne and its boron nitride analogue, J. Phys. Chem. C, 117, 2175, 10.1021/jp3111869

Khorasani, 2017, Nonlinear graphene quantum capacitors for electro-optics, 2D Mater. andApplications, 1, 7, 10.1038/s41699-017-0011-9

Lu, 2017, Synthesis of high-quality graphene and hexagonal boron nitride monolayer in-plane heterostructure on Cu–Ni alloy, Adv. Sci., 1700076, 10.1002/advs.201700076

Wang, 2017, Graphene, hexagonal boron nitride, and their heterostructures: properties and applications, Rsc Adv., 7, 16801, 10.1039/C7RA00260B

Wang, 2016, Optical advantages of graphene on the boron nitride in visible and SW-NIR regions, Rsc Adv., 6, 111345, 10.1039/C6RA24588A

Wang, 2016, Theoretical investigations of optical origins of fluorescent graphene quantum dots, Sci. Rep., 6, 24850, 10.1038/srep24850

Cassabois, 2016, Hexagonal boron nitride is an indirect bandgap semiconductor, Nat. Photonics, 11, 5274