Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures
Tóm tắt
Từ khóa
Tài liệu tham khảo
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Castro Neto, 2009, Geim AK: the electronic properties of graphene, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109
Nair, 2008, Fine structure constant defines visual transparency of graphene, Science, 320, 1308, 10.1126/science.1156965
Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385, 10.1126/science.1157996
Balandin, 2011, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569, 10.1038/nmat3064
Balandin, 2008, Extremely high thermal conductivity of graphene: prospects for thermal management applications in silicon nanoelectronics, 92, 1
Ando, 2009, The electronic properties of graphene and carbon nanotubes, Npg Asia Mater., 1, 17, 10.1038/asiamat.2009.1
Dresselhaus, 2010, Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy, Condens. Matter Phys., 1, 89
Wang, 2013, One-dimensional electrical contact to a two-dimensional material, Science, 342, 614, 10.1126/science.1244358
Reich, 1824, Raman spectroscopy of graphite, Philos. Trans. A Math. Phys. Eng. Sci., 2004, 2271
Yan, 2009, Electron-phonon interactions for optical phonon modes in few-layer graphene, Physics, 79, 115443
Saha, 2008, Phonons in few-layer graphene and interplanar interaction: a first-principles study, Phys. Rev. B Condens. Matter, 78, 165421, 10.1103/PhysRevB.78.165421
Park, 2010, Angle-resolved photoemission spectra of graphene from first-principles calculations, Nano Lett., 9, 4234, 10.1021/nl902448v
Park, 2008, Electron−Phonon interactions in graphene, bilayer graphene, and graphite, Nano Lett., 8, 4229, 10.1021/nl801884n
Charlier, 2007, Electron and phonon properties of graphene: their relationship with carbon nanotubes, 111, 673
Semenoff, 1984, Condensed-matter simulation of a three-dimensional anomaly, Phys. Rev. Lett., 53, 2449, 10.1103/PhysRevLett.53.2449
Haldane, 1988, Model for a quantum Hall effect without landau levels: condensed-matter realization of the “parity anomaly, Phys. Rev. Lett., 61, 2015, 10.1103/PhysRevLett.61.2015
Novoselov, 2005, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197, 10.1038/nature04233
Zhang, 2005, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438, 201, 10.1038/nature04235
Boyanovsky, 1986, Physical origin of topological mass in 2 + 1 dimensions, Nucl. Phys. B, 270, 483, 10.1016/0550-3213(86)90564-X
Novoselov, 2006, Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene, Nat. Phys., 2, 177, 10.1038/nphys245
Mccann, 2006, Landau-level degeneracy and quantum Hall effect in a graphite bilayer, Phys. Rev. Lett., 96, 086805, 10.1103/PhysRevLett.96.086805
Katsnelson, 2006, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys., 2, 620, 10.1038/nphys384
Dombey, 1999, Seventy years of the Klein paradox, Phys. Rep., 315, 41, 10.1016/S0370-1573(99)00023-X
Huard, 2007, Transport measurements across a tunable potential barrier in graphene, Phys. Rev. Lett., 98, 236803, 10.1103/PhysRevLett.98.236803
Micha, 2011, Dirac and Klein-Gordon particles in one-dimensional periodic potentials, Phys. Rev. B Condens. Matter, 77, 115446
Allain, 2011, Klein tunneling in graphene: optics with massless electrons, Eur. Phys. J. B, 83, 301, 10.1140/epjb/e2011-20351-3
Du, 2008, Approaching ballistic transport in suspended graphene, Nat. Nanotechnol., 3, 491, 10.1038/nnano.2008.199
Miao, 2007, Phase-coherent transport in graphene quantum billiards, Science, 317, 1530, 10.1126/science.1144359
Cuevas, 2006, Subharmonic gap structure in short ballistic graphene junctions, Phys. Rev. B, 74, 10.1103/PhysRevB.74.180501
Beenakker, 2006, Specular Andreev reflection in graphene, Phys. Rev. Lett., 97, 067007, 10.1103/PhysRevLett.97.067007
Tworzydło, 2006, Sub-Poissonian shot noise in graphene, Phys. Rev. Lett., 96, 246802, 10.1103/PhysRevLett.96.246802
Dicarlo, 2008, Shot noise in graphene, Phys. Rev. Lett., 100, 156801, 10.1103/PhysRevLett.100.156801
Xu, 2007, Josephson current and multiple andreev reflections in graphene SNS junctions, Phys. Rev. B, 77, 998
Li, 2007, Observation of Landau levels of Dirac fermions in graphite, Nat. Phys., 3, 623, 10.1038/nphys653
Ando, 1982, Electronic properties of two-dimensional systems, Rev. Mod. Phys., 54, 437, 10.1103/RevModPhys.54.437
Miller, 2009, Observing the quantization of zero mass carriers in graphene, Science, 324, 924, 10.1126/science.1171810
Jiang, 2007, Infrared spectroscopy of Landau levels of graphene, Phys. Rev. Lett., 98, 197403, 10.1103/PhysRevLett.98.197403
Henriksen, 2010, Interaction-induced shift of the cyclotron resonance in graphene using infrared spectroscopy, Phys. Rev. Lett., 104, 067404, 10.1103/PhysRevLett.104.067404
Shizuya, 2009, Many-body corrections to cyclotron resonance in monolayer and bilayer graphene, Phys. Rev. B Condens. Matter, 81, 075407, 10.1103/PhysRevB.81.075407
Novoselov, 2007, Room-temperature quantum Hall effect in graphene, Science, 315, 1379, 10.1126/science.1137201
Zhang, 2005, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438, 201, 10.1038/nature04235
Morozov, 2008, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett., 100, 016602, 10.1103/PhysRevLett.100.016602
Chen, 2008, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol., 3, 206, 10.1038/nnano.2008.58
Berger, 2006, Electronic confinement and coherence in patterned epitaxial graphene, Science, 312, 1191, 10.1126/science.1125925
Damle, 1997, Non-zero temperature transport near quantum critical points, Phys. Rev. B, 56, 133, 10.1103/PhysRevB.56.8714
Kovtun, 2005, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett., 94, 111601, 10.1103/PhysRevLett.94.111601
Son, 2007, Vanishing bulk viscosities and conformal invariance of the unitary fermi gas, Phys. Rev. Lett., 98, 020604, 10.1103/PhysRevLett.98.020604
Karsch, 2007, Universal properties of bulk viscosity near the QCD phase transition, Phys. Lett. B, 663, 217, 10.1016/j.physletb.2008.01.080
Levitov, 2016, Electron viscosity, current vortices and negative nonlocal resistance in graphene, Naure Phys., 12, 672
Yoo, 1997, Scanning single-electron transistor microscopy: imaging individual charges, Science, 276, 579, 10.1126/science.276.5312.579
Javey, 2002, High- dielectrics for advanced carbonnanotube transistors and logic gates, Nat. Mater, 1, 241, 10.1038/nmat769
Javey, 2004, Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays, Nano Lett., 4, 1319, 10.1021/nl049222b
Klinke, 2006, Charge transfer induced polarity switching in carbon nanotube transistors, Nano Lett., 5, 555
Kang, 2007, High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes, Nat. Nanotechnol., 2, 230, 10.1038/nnano.2007.77
Akinwande, 2006, Analysis of the frequency response of carbon nanotube transistors, IEEE Trans. Nanotechnol., 5, 599, 10.1109/TNANO.2006.880451
Schedin, 2007, Detection of individual gas molecules adsorbed on graphene, Nat. Mater., 6, 652, 10.1038/nmat1967
Li, 2010, Low operating bias and matched input-output characteristics in graphene logic inverters, Nano Lett., 10, 2357, 10.1021/nl100031x
Meric, 2008, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nat. Nanotechnol., 3, 654, 10.1038/nnano.2008.268
Sordan, 2009, Logic gates with a single graphene transistor, Appl. Phys. Lett., 94, 51, 10.1063/1.3079663
Kim, 2013, Highly tunable local gate controlled complementary graphene device performing as inverter and voltage controlled resistor, Nanotechnology, 24, 395202, 10.1088/0957-4484/24/39/395202
Liao, 2011, Thermally limited current carrying ability of graphene nanoribbons, Phys. Rev. Lett., 106, 256801, 10.1103/PhysRevLett.106.256801
Liu, 2008, Graphene oxidation: thickness-dependent etching and strong chemical doping, Nano Lett., 8, 1965, 10.1021/nl0808684
Rizzi, 2012, Cascading wafer-scale integrated graphene complementary inverters under ambient conditions, Nano Lett., 12, 3948, 10.1021/nl301079r
Yang, 2010, Triple-mode single-transistor graphene amplifier and its applications, Acs Nano, 4, 5532, 10.1021/nn1021583
Xia, 2011, The origins and limits of metal-graphene junction resistance, Nat. Nanotechnol., 6, 179, 10.1038/nnano.2011.6
Wang, 2009, Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene, Nat. Chem., 1, 206, 10.1038/nchem.212
Emtsev, 2008, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nat. Mater., 8, 203, 10.1038/nmat2382
Guerriero, 2013, Gigahertz integrated graphene ring oscillators, Acs Nano, 7, 5588, 10.1021/nn401933v
Wood, 2011, Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition, Nano Lett., 11, 4547, 10.1021/nl201566c
Ghahari, 2017, An on/off Berry phase switch in circular graphene resonators, Science, 356, 845, 10.1126/science.aal0212
Casiraghi, 2007, Raman fingerprint of charged impurities in graphene, Appl. Phys. Lett., 91, 183, 10.1063/1.2818692
Chen, 2009, Ionic screening of charged-impurity scattering in graphene, Nano Lett., 9, 1621, 10.1021/nl803922m
Lin, 2010, 100-GHz transistors from wafer-scale epitaxial graphene, Science, 327, 10.1126/science.1184289
Pakdel, 2012, Low-dimensional boron nitride nanomaterials, Mater. Today, 15, 256, 10.1016/S1369-7021(12)70116-5
Furthmüller, 1994, Ab initio calculation of the structural and electronic properties of carbon and boron nitride using ultrasoft pseudopotentials, Phys. Rev. B Condens Matter., 50, 15606, 10.1103/PhysRevB.50.15606
Yu, 2003, Ab initio study of phase transformations in boron nitride, Phys. Rev. B Condens. Matter, 67, 14108, 10.1103/PhysRevB.67.014108
Zhang, 2006, Structural deformation, strength, and instability of cubic BN compared to diamond: a first-principles study, Phys. Rev. B Condens. Matter, 73, 2368, 10.1103/PhysRevB.73.144115
Xu, 1991, Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures, Phys. Rev. B Condens. Matter, 44, 7787, 10.1103/PhysRevB.44.7787
Knittle, 1995, High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions, Phys. Rev. B Condens. Matter, 51, 12149, 10.1103/PhysRevB.51.12149
Pakdel, 2012, Low-dimensional boron nitride nanomaterials, Mater. Today, 15, 256, 10.1016/S1369-7021(12)70116-5
Liu, 1995, Cubic-to-rhombohedral transformation in boron nitride induced by laser heating: in situ Raman-spectroscopy studies, Phys. Rev. B Condens. Matter, 51, 8591, 10.1103/PhysRevB.51.8591
Blase, 1995, Quasiparticle band structure of bulk hexagonal boron nitride and related systems, Phys. Rev. B Condens. Matter, 51, 6868, 10.1103/PhysRevB.51.6868
Zupan, 1972, Energy bands in boron nitride and graphite, Phys. Rev. B, 6, 2477, 10.1103/PhysRevB.6.2477
Ooi, 2005, Electronic structure and bonding in hexagonal boron nitride, J. Phys. Condens. Matter, 18, 97, 10.1088/0953-8984/18/1/007
Ooi, 2006, Structural properties of hexagonal boron nitride, Model. Simul. Mater. Sci. Eng., 14, 515, 10.1088/0965-0393/14/3/012
Topsakal, 2009, First-principles study of two-and one-dimensional honeycomb structures of boron nitride, Phys. Rev. B, 79, 115442, 10.1103/PhysRevB.79.115442
Ekuma, 2017, First-Principles-based method for electron localization: application to monolayer hexagonal boron nitride, Phys. Rev. Lett., 118, 106404, 10.1103/PhysRevLett.118.106404
Meyer, 2009, Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes, Nano Lett., 9, 2683, 10.1021/nl9011497
Han, 2008, Structure of chemically derived mono- and few-atomic-layer boron nitride sheets, Appl. Phys. Lett., 93, 223103, 10.1063/1.3041639
Watanabe, 2004, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater., 3, 404, 10.1038/nmat1134
Gao, 2013, Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils, Acs Nano, 7, 5199, 10.1021/nn4009356
Kim, 2012, Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition, Nano Lett., 12, 161, 10.1021/nl203249a
Arnaud, 2006, Huge excitonic effects in layered hexagonal boron nitride, Phys. Rev. Lett., 96, 026402, 10.1103/PhysRevLett.96.026402
Blase, 1995, Quasiparticle band structure of bulk hexagonal boron nitride and related systems, Phys. Rev. B Condens. Matter, 51, 6868, 10.1103/PhysRevB.51.6868
Furthmüller, 1994, Ab initio calculation of the structural and electronic properties of carbon and boron nitride using ultrasoft pseudopotentials, Phys. Rev. B Condens Matter., 50, 15606, 10.1103/PhysRevB.50.15606
Xu, 1991, Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures, Phys. Rev. B Condens. Matter, 44, 7787, 10.1103/PhysRevB.44.7787
Jang, 2008, Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering, Phys. Rev. Lett., 101, 146805, 10.1103/PhysRevLett.101.146805
Kim, 2012, Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices, Acs Nano, 6, 8583, 10.1021/nn301675f
Datta, 2008, Surface potentials and layer charge distributions in few-layer graphene, Nano Lett., 9, 7, 10.1021/nl8009044
Castellanos-Gomez, 2012, Electric-field screening in atomically thin layers of MoS2: the role of interlayer coupling, Adv. Mater., 25, 899, 10.1002/adma.201203731
Li, 2015, Dielectric screening in atomically thin boron nitride nanosheets, Nano Lett., 15, 218, 10.1021/nl503411a
Santos, 2013, Electric-field dependence of the effective dielectric constant in graphene, Nano Lett., 13, 898, 10.1021/nl303611v
Li, 2008, Tunable bandgap structures of two-dimensional boron nitride, J. Appl. Phys., 104, 094311, 10.1063/1.3006138
Park, 2008, Energy gaps and stark effect in boron nitride nanoribbons, Nano Lett., 8, 2200, 10.1021/nl080695i
Zheng, 2008, Half metallicity along the edge of zigzag boron nitride nanoribbons, Phys. Rev. B, 78, 205415, 10.1103/PhysRevB.78.205415
Slotman, 2013, Structure, stability and defects of single layer hexagonal BN in comparison to graphene, J. Phys. Condens. Matter An Inst. Phys. J., 25, 045009, 10.1088/0953-8984/25/4/045009
He, 2009, p-type conduction in beryllium-implanted hexagonal boron nitride films, Appl. Phys. Lett., 95, 252106, 10.1063/1.3276065
Lu, 1996, Electrical properties of boron nitride thin films grown by neutralized nitrogen ion assisted vapor deposition, Appl. Phys. Lett., 68, 622, 10.1063/1.116488
Dahal, 2011, Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material, Appl. Phys. Lett., 98, 211110, 10.1063/1.3593958
Nose, 2006, Electric conductivity of boron nitride thin films enhanced by in situ doping of zinc, Appl. Phys. Lett., 89, 956, 10.1063/1.2354009
Xue, 2013, Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets, Nanoscale Res. Lett., 8, 1, 10.1186/1556-276X-8-49
Watanabe, 2004, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater., 3, 404, 10.1038/nmat1134
Evans, 2008, Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy, J. Phys. Condens Matter, 20, 075233, 10.1088/0953-8984/20/7/075233
Ponomarenko, 2011, Tunable metal-insulator transition in double-layer graphene heterostructures, Nat. Phys., 7, 958, 10.1038/nphys2114
Amet, 2011, Tunneling spectroscopy of graphene-boron nitride heterostructures, Phys. Rev. B Condens. Matter, 85, 073405, 10.1103/PhysRevB.85.073405
Britnell, 2011, Field-effect tunneling transistor based on vertical graphene heterostructures, Science, 335, 947, 10.1126/science.1218461
Simmons, 1963, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film, J. Appl. Phys., 34, 1793, 10.1063/1.1702682
Kharche, 2011, Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate, Nano Lett., 11, 5274, 10.1021/nl202725w
Lee, 2011, Electron tunneling through atomically flat and ultrathin hexagonal boron nitride, Appl. Phys. Lett., 99, 243114, 10.1063/1.3662043
Britnell, 2012, Electron tunneling through ultrathin boron nitride crystalline barriers, Nano Lett., 12, 1707, 10.1021/nl3002205
Kubota, 2007, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure, Science, 317, 932, 10.1126/science.1144216
Watanabe, 2009, Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride, Nat. Photonics, 3, 591, 10.1038/nphoton.2009.167
Lee, 2010, Frictional characteristics of atomically thin sheets, Science, 328, 76, 10.1126/science.1184167
Dean, 2010, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol., 5, 722, 10.1038/nnano.2010.172
Li, 2009, Transfer of large-area graphene films for high-performance transparent conductive electrodes, Nano Lett., 9, 4359, 10.1021/nl902623y
Lee, 2012, Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics, Nano Lett., 12, 714, 10.1021/nl203635v
Xu, 2012, Investigation of hexagonal boron nitride for application as counter electrode in dye-sensitized solar cells, Adv. Mater. Res., 512–515, 242
Majety, 2012, Band-edge transitions in hexagonal boron nitride epilayers, Appl. Phys. Lett., 101, 932, 10.1063/1.4742194
Li, 2012, Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers, Appl. Phys. Lett., 101, 67, 10.1063/1.4764533
Lin, 2013, Optoelectronic properties of hexagonal boron nitride epilayers, Quantum Sens. Nanophot. Devices X, 8631, 8631281
Podzorov, 2004, Novel high-mobility field-effect transistors based on transition metal dichalcogenides, Appl. Phys. Lett., 84, 3301, 10.1063/1.1723695
Radisavljevic, 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279
Yang, 2014, Chloride molecular doping technique on 2D materials: WS2 and MoS2, Nano Lett., 14, 6275, 10.1021/nl502603d
Lee, 2014, Atomically thin p–n junctions with van der Waals heterointerfaces, Nat. Nanotechnol., 9, 676, 10.1038/nnano.2014.150
Gao, 2013, Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils, ACS. Nano, 7, 5199, 10.1021/nn4009356
Howell, 2015, Investigation of band-offsets at monolayer-multilayer MoS₂ junctions by scanning photocurrent microscopy, Nano Lett., 15, 2278, 10.1021/nl504311p
Chuang, 2016, Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors, Nano Lett., 16, 1896, 10.1021/acs.nanolett.5b05066
Balandin, 2008, Superior thermal conductivity of single-layer graphene, Nano Lett., 8, 902, 10.1021/nl0731872
Dean, 2010, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol., 5, 722, 10.1038/nnano.2010.172
Wang, 2011, High-performance graphene devices on SiO₂/Si substrate modified by highly ordered self-assembled monolayers, Adv. Mater., 23, 2464, 10.1002/adma.201100476
Decker, 2011, Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy, Nano Lett., 11, 2291, 10.1021/nl2005115
Dean, 2013, Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices, Nature, 497, 598, 10.1038/nature12186
Guo, 2008, Tuning field-induced energy gap of bilayer graphene via interlayer spacing, Appl. Phys. Lett., 92, 666, 10.1063/1.2943414
Zhou, 2007, Substrate-induced bandgap opening in epitaxial graphene, Nat. Mater., 6, 770, 10.1038/nmat2003
Giovannetti, 2007, Substrate-induced bandgap in graphene on hexagonal boron nitride, Phys. Rev. B Condens. Matter & Mater. Phys., 76, 3009, 10.1103/PhysRevB.76.073103
Slawinska, 2010, Revers. modifications linear dispersion - graphene between boron nitride monolayers, 82, 2283
Lu, 2008, Asymmetric spin gap opening of graphene on cubic boron nitride (111), Substrate. J.phys.chem.c, 112, 12683, 10.1021/jp802525v
Moon, 2014, Electronic properties of graphene/hexagonal-boron-nitride moiré superlattice, Phys. Rev. B.., 90, 155406, 10.1103/PhysRevB.90.155406
Zhou, 2015, Van der Waals bilayer energetics: generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers, Phys. Rev. B, 92, 155438, 10.1103/PhysRevB.92.155438
Hunt, 2013, Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure, Science, 340, 1427, 10.1126/science.1237240
Zhong, 2011, First-principles study of strain-induced modulation of energy gaps of graphene/BN and BN bilayers, Phys. Rev. B, 83, 193403, 10.1103/PhysRevB.83.193403
Lebedeva, 2016, Dislocations in stacking and commensurate-incommensurate phase transition in bilayer graphene and hexagonal boron nitride, Phys. Rev. B, 93, 235414, 10.1103/PhysRevB.93.235414
Slotman, 2014, Phonons and electron-phonon coupling in graphene-h-BN heterostructures, Ann. Der Phys., 526, 381, 10.1002/andp.201400155
Sachs, 2011, Adhesion and electronic structure of graphene on hexagonal boron nitride substrates, Phys. Rev. B, 84, 195414, 10.1103/PhysRevB.84.195414
Giovannetti, 2007, Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations, Phys. Rev. B Condens. Matter & Mater. Phys., 76, 3009
Fan, 2011, Tunable electronic structures of graphene/boron nitride heterobilayers, Appl. Phys. Lett., 98, 083103, 10.1063/1.3556640
Argentero, 2017, Unraveling the 3D Atomic Structure of a Suspended Graphene/hBN van der Waals Heterostructure, Nano Lett., 17, 1409, 10.1021/acs.nanolett.6b04360
Wang, 2016, Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride, Nat. Phys., 12, 1111, 10.1038/nphys3856
Sachs, 2011, Adhesion and electronic structure of graphene on hexagonal boron nitride substrates, Phys. Rev. B, 84, 195414, 10.1103/PhysRevB.84.195414
Jung, 2015, Vibrational properties of h-BN and h-BN-graphene heterostructures probed by inelastic electron tunneling spectroscopy, Sci. Rep., 5, 16642, 10.1038/srep16642
Dean, 2013, Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices, Nature, 497, 598, 10.1038/nature12186
Hofstadter, 1976, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B, 14, 2239, 10.1103/PhysRevB.14.2239
Albrecht, 2001, Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance, Phys. Rev. Lett., 86, 147, 10.1103/PhysRevLett.86.147
Wang, 2015, Evidence for a fractional fractal quantum Hall effect in graphene superlattices, Science, 350, 1231, 10.1126/science.aad2102
Hunt, 2013, Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure, Science, 340, 1427, 10.1126/science.1237240
Chen, 2014, Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures, Nat. Commun., 5, 4461, 10.1038/ncomms5461
Dai, 2014, Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride, Science, 343, 1125, 10.1126/science.1246833
Caldwell, 2014, Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride, Nat. Commun., 5, 5221, 10.1038/ncomms6221
Dai, 2015, Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material, Nat. Commun., 6
Fei, 2012, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature, 487, 82, 10.1038/nature11253
Wang, 2014, Tunable absorption enhancement with graphene nanodisk arrays, Nano Lett., 14, 299, 10.1021/nl404042h
Yan, 2013, Damping pathways of mid-infrared plasmons in graphene nanostructures, Nat. Photonics, 7, 394, 10.1038/nphoton.2013.57
Liu, 2007, Far-field optical hyperlens magnifying sub-diffraction-limited objects, Science, 315, 1686, 10.1126/science.1137368
Iorsh, 2012, Novel hyperbolic metamaterials based on multilayer graphene structures, Phys. Rev. B Condens. Matter, 87, 478
Dai, 2015, Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial, Nat. Nanotechnol., 10, 682, 10.1038/nnano.2015.131
Sugino, 2002, Electron field emission from boron-nitride nanofilms, Appl. Phys. Lett., 80, 3602, 10.1063/1.1477622
Yamada, 2014, Field emission characteristics from graphene on hexagonal boron nitride, Appl. Phys. Lett., 104, 140, 10.1063/1.4881718
Mayorov, 2011, Micrometer-scale ballistic transport in encapsulated graphene at room temperature, Nano Lett., 11, 2396, 10.1021/nl200758b
Sandner, 2015, Ballistic transport in graphene antidot lattices, Nano Lett., 15, 8402, 10.1021/acs.nanolett.5b04414
Banszerus, 2015, Ballistic transport exceeding 28 μm in CVD grown graphene, Nano Lett., 16, 1387, 10.1021/acs.nanolett.5b04840
Dean, 2010, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol., 5, 722, 10.1038/nnano.2010.172
Weingart, 2010, Low-temperature ballistic transport in nanoscale epitaxial graphene cross junctions, Appl. Phys. Lett., 95, 262101, 10.1063/1.3276560
Castro, 2010, Limits on charge carrier mobility in suspended graphene due to flexural phonons, Phys. Rev. Lett., 105, 266601, 10.1103/PhysRevLett.105.266601
Bolotin, 2008, Temperature-dependent transport in suspended graphene, Phys. Rev. Lett., 101, 096802, 10.1103/PhysRevLett.101.096802
Du, 2008, Approaching ballistic transport in suspended graphene, Nat. Nanotechnol., 3, 491, 10.1038/nnano.2008.199
Weingart, 2009, Low-temperature ballistic transport in nanoscale epitaxial graphene cross junctions, Appl. Phys. Lett., 95, 206, 10.1063/1.3276560
Gómez-Navarro, 2007, Electronic transport properties of individual chemically reduced graphene oxide sheets, Nano Lett., 7, 3499, 10.1021/nl072090c
Bostwick, 2009, Quasiparticle transformation during a metal-insulator transition in graphene, Phys. Rev. Lett., 103, 056404, 10.1103/PhysRevLett.103.056404
Tikhonenko, 2009, Transition between electron localization and antilocalization in graphene, Phys. Rev. Lett., 103, 226801, 10.1103/PhysRevLett.103.226801
Banszerus, 2015, Ballistic transport exceeding 28 μm in CVD grown graphene, Nano Lett., 16, 1387, 10.1021/acs.nanolett.5b04840
Ponomarenko, 2011, Tunable metal-insulator transition in double-layer graphene heterostructures, Nat. Phys., 7, 958, 10.1038/nphys2114
Kim, 2015, Synthesis of large-area multilayer hexagonal boron nitride for high material performance, Nat. Commun., 6, 8662, 10.1038/ncomms9662
Britnell, 2011, Field-effect tunneling transistor based on vertical graphene heterostructures, Science, 335, 947, 10.1126/science.1218461
Kelly, 2017, All-printed thin-film transistors from networks of liquid-exfoliated nanosheets, Science, 356, 69, 10.1126/science.aal4062
Kang, 2016, Effects of electrode layer band structure on the performance of multilayer graphene–hBN–graphene interlayer tunnel field effect transistors, Nano Lett., 16, 4975, 10.1021/acs.nanolett.6b01646
Chari, 2015, Properties of self-aligned short-channel graphene field-effect transistors based on boron-nitride-dielectric encapsulation and edge contacts, IEEE Trans. Electron Devices, 62, 4322, 10.1109/TED.2015.2482823
François, 2013, Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures, Acs Nano, 7, 7931, 10.1021/nn402954e
Stolyarov, 2015, Suppression of 1/f noise in near-ballistic h-BN-graphene-h-BN heterostructure field-effect transistors, Appl. Phys. Lett., 107, 183, 10.1063/1.4926872
Wang, 2011, BN/Graphene/BN transistors for RF applications, Electron Device Lett. IEEE, 32, 1209, 10.1109/LED.2011.2160611
Kayyalha, 2015, Observation of reduced 1/f noise in graphene field effect transistors on boron nitride substrates, Appl. Phys. Lett., 107, 197, 10.1063/1.4930992
Roy, 2014, Field-effect transistors built from all two-dimensional material components, Acs Nano, 8, 6259, 10.1021/nn501723y
Park, 2015, Ferroelectric single-crystal gated graphene/hexagonal-BN/ferroelectric field effect transistor, Acs Nano, 9, 10729, 10.1021/acsnano.5b04339
Song, 2016, Seed-assisted growth of single-crystalline patterned graphene domains on hexagonal boron nitride by chemical vapor deposition, Nano Lett., 16, 6109, 10.1021/acs.nanolett.6b02279
Petrone, 2015, Flexible graphene field-effect transistors encapsulated in hexagonal boron nitride, Acs Nano, 9, 8953, 10.1021/acsnano.5b02816
Sirringhaus, 2014, 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon, Adv. Mater., 26, 1319, 10.1002/adma.201304346
Coropceanu, 2007, Charge transport in organic semiconductors, Chem. Rev., 107, 926, 10.1021/cr050140x
Yang, 2016, Designed assembly and integration of colloidal nanocrystals for device applications, Adv. Mater., 28, 1176, 10.1002/adma.201502851
Zaumseil, 2015, Single-walled carbon nanotube networks for flexible and printed electronics, Semicond. Sci. Technol., 30, 074001, 10.1088/0268-1242/30/7/074001
Kim, 2016, van der Waals Heterostructures with High Accuracy Rotational Alignment, Nano Lett., 16, 1989, 10.1021/acs.nanolett.5b05263
Gupta, 2006, Raman scattering from high-frequency phonons in supported n-graphene layer films, Nano Lett., 6, 2667, 10.1021/nl061420a
Wang, 2013, One-dimensional electrical contact to a two-dimensional material, Science, 342, 614, 10.1126/science.1244358
Sire, 2012, Flexible gigahertz transistors derived from solution-based single-layer graphene, Nano Lett., 12, 1184, 10.1021/nl203316r
Petrone, 2013, Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates, Nano Lett., 13, 121, 10.1021/nl303666m
Wu, 2012, State-of-the-Art graphene high-frequency electronics, Nano Lett., 12, 3062, 10.1021/nl300904k
Lee, 2012, All graphene-based thin film transistors on flexible plastic substrates, Nano Lett., 12, 3472, 10.1021/nl300948c
Lu, 2012, High mobility flexible graphene field-effect transistors with self-healing gate dielectrics, Acs Nano, 6, 4469, 10.1021/nn301199j
Kim, 2010, High-performance flexible graphene field effect transistors with ion gel gate dielectrics, Nano Lett., 10, 3464, 10.1021/nl101559n
Cheng, 2014, Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics, Nat. Commun., 5, 5143, 10.1038/ncomms6143
Mishchenko, 2014, Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures, Nat. Nanotechnol., 9, 808, 10.1038/nnano.2014.187
Liu, 2013, In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes, Nat. Nanotechnol., 8, 119, 10.1038/nnano.2012.256
Shi, 2014, Boron nitride-graphene nanocapacitor and the origins of anomalous size-dependent increase of capacitance, Nano Lett., 14, 1739, 10.1021/nl4037824
Özçelik, 2015, High-performance planar nanoscale dielectric capacitors, Phys. Rev. B, 91, 195445, 10.1103/PhysRevB.91.195445
Ozcelik, 2013, Size dependence in the stabilities and electronic properties of alpha-graphyne and its boron nitride analogue, J. Phys. Chem. C, 117, 2175, 10.1021/jp3111869
Khorasani, 2017, Nonlinear graphene quantum capacitors for electro-optics, 2D Mater. andApplications, 1, 7, 10.1038/s41699-017-0011-9
Lu, 2017, Synthesis of high-quality graphene and hexagonal boron nitride monolayer in-plane heterostructure on Cu–Ni alloy, Adv. Sci., 1700076, 10.1002/advs.201700076
Wang, 2017, Graphene, hexagonal boron nitride, and their heterostructures: properties and applications, Rsc Adv., 7, 16801, 10.1039/C7RA00260B
Wang, 2016, Optical advantages of graphene on the boron nitride in visible and SW-NIR regions, Rsc Adv., 6, 111345, 10.1039/C6RA24588A
Wang, 2016, Theoretical investigations of optical origins of fluorescent graphene quantum dots, Sci. Rep., 6, 24850, 10.1038/srep24850
Cassabois, 2016, Hexagonal boron nitride is an indirect bandgap semiconductor, Nat. Photonics, 11, 5274